期刊文献+

一种基于距离参数化CKF的单站无源定位方法 被引量:2

A single-station passive location method based on range-parameterised Cubature Kalman Filter
下载PDF
导出
摘要 针对单站无源定位系统中,观测站机动导致的滤波精度降低问题,提出了一种基于距离参数化CKF的单站无源定位方法(range-parameterised cubature kalman filter smoothing,RPCKFS)。引入距离参数化的思想,结合观测站观测范围作为先验值,将观测范围划分为若干个区间,并赋予初始权重,在各个区间引入后向平滑容积卡尔曼滤波(cubature kalman filter smoothing,CKFS),利用各时刻的预测值与观测值的比值来更新区间权重,最后对各区间状态信息加权融合来实现目标状态的获取。仿真结果表明:该方法能够有效降低滤波全局对观测站机动的敏感性,提高滤波稳定性与定位精度。 Aiming at the problem that the filtering accuracy decreases due to the maneuvering of the observation station,this paper proposes a single-station passive positioning method based on the Range-Parameterized Cubature Kalman Filter Smoothing(PRCKFS).The idea of distance parameterization is introduced,combined with the observation range of the observation station as the prior value.The observation range is divided into several intervals,and the initial weights are given.Backward Cubature Kalman Filter Smoothing(CKFS)is introduced into each interval,whose weight is updated by the ratio of the predicted value and the observed value,and finally the target state is obtained through a weighted fusion of the state information of each interval.The simulation results show that the method can effectively reduce the sensitivity of the global filtering to the maneuvering of the observation station,and improve filtering stability and positioning accuracy.
作者 李徽 LI Hui(Jiangsu Automation Research Institute,Lianyungang 222006,China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第1期204-208,共5页 Journal of Ordnance Equipment Engineering
基金 国防科技173计划技术领域基金项目(2021-JCJQ-JJ-1182)。
关键词 单站无源定位 容积卡尔曼滤波 距离参数化 后向平滑 single-station passive location Cubature Kalman filter range-parameterised backward-smoothing
  • 引文网络
  • 相关文献

参考文献5

二级参考文献34

  • 1张娟娟,于云峰,闫杰,杨淑君.基于UKF的反辐射导弹抗机动雷达短时关机仿真研究[J].飞行器测控学报,2010,29(1):39-43. 被引量:4
  • 2刘忠,邓聚龙.多传感器系统纯方位定位与可观测性分析[J].火力与指挥控制,2004,29(5):79-83. 被引量:13
  • 3徐景硕,秦永元,彭蓉.自适应卡尔曼滤波器渐消因子选取方法研究[J].系统工程与电子技术,2004,26(11):1552-1554. 被引量:68
  • 4刘健,刘忠,玄兆林.纯方位TMA的变增益扩展卡尔曼滤波算法[J].火力与指挥控制,2007,32(1):67-68. 被引量:6
  • 5Shalom Y B, Li X R, Thiagalingam K. Estimation with applications to tracking and navigation [ M ]. New York: Wiley ,2001:381-394.
  • 6Julier S, Uhlmann J, Durrant-Whyte H F. A new approach for filtering nonlinear systems [ C ]. In Proceeding of the American Control Conference. Seattle, WA : IEEE, 1995 : 1628-1632.
  • 7Julier S, Uhlmann J, Durrant-Whyte H F. A New Method for the Nonlinear Transformation of Means and Covari- ances in Filters and Estimators [ J ]. IEEE Trans on AC, 2000, 45(3) : 477-482.
  • 8Julier S, Uhlmann J. Unscented filtering and nonlinear estimation [ J ]. Proceeding of the IEEE, 2004, 92 ( 3 ) : 401-422.
  • 9Arasaratnam I, Haykin S. Cubature Kalman filters [ J ]. IEEE Trans. on Automatic Control, 2009,54(6) :1254-1269.
  • 10Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simu- lations [ J ]. IEEE Trans. on Signal Processing, 2010,58 (10) :4977-4993.

共引文献19

同被引文献25

引证文献2

;
使用帮助 返回顶部