期刊文献+

Melatonin shapes bacterial clearance function of porcine macrophages during enterotoxigenic Escherichia coli infection 被引量:2

原文传递
导出
摘要 Due to the immature gastrointestinal immune system,weaning piglets are highly susceptible to pathogens,e.g.,enterotoxigenic Escherichia coli(ETEC).Generally,pathogens activate the immune cells(e.g.,macrophages)and shape intracellular metabolism(including amino acid metabolism);nevertheless,the metabolic cues of tryptophan(especially melatonin pathway)in directing porcine macrophage function during ETEC infection remain unclear.Therefore,this study aimed to investigate the changes in the serotonin pathway of porcine macrophages during ETEC infection and the effect of melatonin on porcine macrophage functions.Porcine macrophages(3D4/21 cells)were infected with ETEC,and the change of serotonin pathway was analysed by reverse transcription PCR and metabolomic analysis.The effect of melatonin on porcine macrophage function was also studied with proteomic analysis.In order to investigate the effect of melatonin on bacterial clearance function of porcine macrophages during ETEC infection,methods such as bacterial counting,reverse transcription PCR and western blotting were used to detect the corresponding indicators.The results showed that ETEC infection blocked melatonin production in porcine macrophages(P<0.05)which is largely associated with the heat-stable enterotoxin b(STb)of ETEC(P<0.05).Interestingly,melatonin altered porcine macrophage functions,including bacteriostatic and bactericidal activities based on proteomic analysis.In addition,melatonin pretreatment significantly reduced extracellular lactate dehydrogenase(LDH)activity(P<0.05),indicating that melatonin also attenuated ETEC-triggered macrophage death.Moreover,melatonin pretreatment resulted in the decrease of viable ETEC in 3D4/21 cells(P<0.05),suggesting that melatonin enhances bacterial clearance of porcine macrophages.These results suggest that melatonin is particularly important in shaping porcine macrophage function during ETEC infection.
出处 《Animal Nutrition》 SCIE CSCD 2022年第4期242-251,共10页 动物营养(英文版)
  • 相关文献

参考文献2

二级参考文献115

  • 1Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immuno12002; 20:197-216.
  • 2Chen GY, Nunez G. Sterile inflammation: sensing and react- ing to damage. Nat Rev lmmuno12010; 10:826-837.
  • 3Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. JGen Physiol 1927; 8:519-530.
  • 4Sbarra AJ, Karnovsky ML. The biochemical basis of phago- cytosis. I. Metabolic changes during the ingestion of parti- cles by polymorphonuclear leukocytes. J Biol Chem 1959; 234:1355-1362.
  • 5Guthrie LA, McPhail LC, Henson PM, Johnston Jr RB. Prim- ing of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased ac- tivity of the superoxide-producing enzyme. J Exp Med 1984; 160:1656-1671.
  • 6Borregaard N, Herlin T. Energy metabolism of human neutro- phils during phagocytosis. J Clin Invest 1982; 70:550-557.
  • 7Hard GC. Some biochemical aspects of the immune macro- phage. BrJExp Pathol 1970; 51:97-105.
  • 8Newsholme P, Gordon S, Newsholme EA. Rates of utiliza- tion and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 1987; 242:631-636.
  • 9Newsholme P, Curi R, Gordon S, Newsholme EA. Metabo- lism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 1986; 239:121- 125.
  • 10Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-in- duced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010; 115:4742-4749.

共引文献140

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部