期刊文献+

非齐次基因调控网络模型研究综述

Survey of Research on Non-homogeneous Gene Regulatory Network Models
下载PDF
导出
摘要 在生物信息学领域中,基因调控网络的构建至关重要。近年来,非齐次动态贝叶斯网络已成为从基因表达时间序列数据中学习基因调控网络的一种常用建模工具。针对这一研究领域,梳理了基于齐次动态贝叶斯网络的基因调控网络建模方法,并从时间片划分方式和基因调控网络参数学习,综述了近十几年提出的非齐次动态贝叶斯模型,主要内容包括:时间片划分方式,包括自由分配、连续变点过程、离散变点过程以及基于隐马尔可夫的变点过程;基因调控网络参数学习,主要包括顺序耦合参数和全局耦合参数。之后对非齐次动态贝叶斯网络模型的性能进行了分析,着重介绍了这些模型对于基因调控网络建模的准确性和可靠性,以及模型之间的区别与联系。最后指出了基因调控网络构建的困难和挑战以及非齐次动态贝叶斯网络模型未来的一些研究方向。 In the field of bioinformatics,the construction of gene regulatory networks is crucial.In recent years,non homogeneous dynamic Bayesian networks have become a common modeling tool for learning gene regulatory networks from gene expression time-series data.Aiming at this research field,this paper combs the gene regulatory network modeling methods based on homogeneous dynamic Bayesian network,and summarizes the non homogeneous dynamic Bayesian models proposed in the past ten years from the time slice division method and gene regulation network parameter learning.The main contents include:time slice division method,including free allocation,continuous changepoint process,discrete changepoint process and hidden Markov-based changepoint process;gene regulation network parameter learning,mainly including sequence coupling parameters and global coupling parameters.After that,the performance of the non-homogeneous dynamic Bayesian network models is analyzed,and the accuracy and reliability of these models for gene regulatory network modeling,as well as the differences and connections between the models are introduced.Finally,the difficulties and challenges of gene regulatory network construction and some future research directions of non-homogeneous dynamic Bayesian net work models are pointed out.
作者 张倩倩 胡春玲 张家瑶 李大伟 邵鸣义 ZHANG Qianqian;HU Chunling;ZHANG Jiayao;LI Dawei;SHAO Mingyi(College of Artificial Intelligence and Big Data,Hefei University,Hefei 230031,China;Anhui Province Urban Infrastructure Big Data Technology Application Engineering Laboratory,Hefei University,Hefei 230031,China)
出处 《计算机科学与探索》 CSCD 北大核心 2023年第2期342-354,共13页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金面上项目(61976077) 合肥市自然科学基金(2021035) 合肥学院研究生创新创业项目(21YCXL18,21YCXL25)。
关键词 动态贝叶斯网络 非齐次动态贝叶斯网络 基因调控网络 生物信息学 dynamic Bayesian networks non-homogeneous dynamic Bayesian networks gene regulatory network bioinformatics
  • 相关文献

参考文献6

二级参考文献57

  • 1虞慧婷,吴骋,柳伟伟,付旭平,贺佳.基因调控网络模型构建方法[J].第二军医大学学报,2006,27(7):737-740. 被引量:6
  • 2AKUTSU T, KUHARA S, MIYANO S. Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function [ J ]. Journal of Computational Biology,2000,7( 3-4 ) :331 - 343.
  • 3WAHDE M, HERTZ J. Coarse-grained reverse engineering of genetic regulatory networks [ J ]. Biosystems, 2000,55 ( 1-3 ) : 129- 136.
  • 4FRIEDMAN N, LINIAL M, NACHMAN I, et al. Using Bayesian network to analyze expression data[ J]. Journal of Computational Biology, 2000,7(3-4):601-620.
  • 5LEARY P, FRANCOIS O. BNT structure iearning package : documentation and experiments[ R]. 2004.
  • 6FRIEDMAN N, MURPHY K, RUSSELL S. Learning the structure of dynamic probabilistic networks[ C ]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:139- 147.
  • 7SPELLMAN P T, SHERLOCK G, ZHANG M Q, et al. Comprehensive identification of cell cycle-regulated genes of the yesat saccaromyces cerevisiae by microarray hybridization[J]. Mol Biol Cell, 1998, 9(12) :3273- 3297.
  • 8Home page of KEGG[ EB/OL]. http ://www. genome, ad. jp/kegg.
  • 9KIM S, IMOTO S, MIYANO S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data [ J ]. Biosystems, 2004,75 ( 1-3 ) : 57- 65.
  • 10FRIEDMAN N. The Bayesian structural EM algorithm[ C]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA : Morgan Kanfmann, 1998:571 - 578.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部