期刊文献+

基于改进的Faster R-CNN的息肉目标检测和分类方法 被引量:3

Object detection and classification of polyps based on improved Faster R-CNN
下载PDF
导出
摘要 为了解决结肠镜下腺瘤性息肉和增生性息肉不易分型的问题,提出一种基于改进的Faster R-CNN的目标检测及息肉分类模型.在数据预处理阶段,对原有的2426张息肉图像(1582张腺瘤性息肉图像,844张增生性息肉图像)通过2种方式进行图像增强,并且通过改进的特征提取、边界框回归以及非极大值抑制的网络,用602张图像(386张腺瘤性图像,216张增生性息肉图像)进行测试.通过实验证明,在交并比(IoU)取0.5时,获得了86.8%的平均精度均值,相较于改进之前提升了2.3%.实验结果验证了该模型的潜在临床应用价值. In order to solve the problem of difficult classification of adenomatous polyps and hyperplastic polyps under colorectoscopy,an object detection and polyp classification model based on improved Faster R-CNN was proposed.Polyp images(1582 adenomatous polyp images,844 hyperplastic polyp images)were image-enhanced in two ways,and 602 images(386 adenomatous images,216 hyperplastic polyp images)were tested.It is proved by experiments that when the intersection-union ratio(Io U)is set to be 0.5,an average precision of 86.8%is obtained,which is 2.3%higher than that before the improvement.The experimental results verified the potential clinical application value of this model.
作者 杨昆 原嘉成 高聪 孙宇锋 路宇飞 常世龙 薛林雁 YANG Kun;YUAN Jiacheng;GAO Cong;SUN Yufeng;LU Yufei;CHANG Shilong;XUE Linyan(College of Quality and Technical Supervision,Hebei University,Baoding 071002,China;National&Local Joint Engineering Research Center of Metrology Instrument and System,Baoding 071002,China;New Energy Vehicle Power System Lightweight Technology Innovation Center of Hebei Province,Baoding 071002,China;Hebei Far East Communication System Engineering Co.,Ltd,Shijiazhuang 050200,China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2023年第1期103-112,共10页 Journal of Hebei University(Natural Science Edition)
基金 河北省自然科学基金资助项目(A2011201155) 河北大学校长科研基金资助项目(XZJJ201914) 河北大学多学科交叉研究项目(DXK201914)。
关键词 息肉 目标检测 分类 Faster R-CNN polyps object detection classification Faster R-CNN
  • 相关文献

参考文献1

共引文献26

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部