摘要
针对新能源并网带来的电压特性变化和低压拓扑关系辨识颗粒度细化需求,提出了基于图信号处理的用户链路识别模型。该识别模型利用相邻节点间的电压相似性表征图信号的平滑性,结合节点电流定律对网络结构的约束,克服新能源并网带来的同相用户电压相似性变差的影响;利用图结构固有的链路属性,实现低压拓扑识别下沉至用户之间的上下游连接关系识别。最后,利用真实用户数据搭建仿真模型验证了所提算法的有效性,探讨了所提算法在不同场景下的性能表现,并与已有识别算法进行了比较分析。算例表明,所提算法与已有算法相比,可有效识别用户链路关系,且对新能源并网渗透率和数据误差率有较好的鲁棒性。
In view of the voltage characteristic changes brought by the renewable energy integration and the fine-grained need for low-voltage topological relationship identification,a user link identification model based on graph signal processing(GSP)is proposed.The identification model uses the voltage similarity between adjacent nodes to represent the smoothness of the graph signal.The constraints of node current law on network structure are combined to overcome the influence of the in-phase user voltage similarity deterioration caused by renewable energy integration.The inherent link properties of the graph structure are used to realize the identification of the low-voltage topology down to the upstream and downstream connections between users.Finally,the simulation model based on real user data is used to verify the effectiveness of the proposed method.The performance of the proposed methods in different scenarios is discussed,and the proposed method is compared with existing identification methods.The example shows that,compared with the existing methods,the proposed method can effectively identify the user link relationship,and has better robustness to the penetration rate of renewable energy integration and data error rate.
作者
林国营
王鹏
周来
张晓平
叶承晋
LIN Guoying;WANG Peng;ZHOU Lai;ZHANG Xiaoping;YE Chengjin(School of Electrical Engineering,Zhejiang University,Hangzhou 310058,China;China Southern Power Grid Electrical Technology Co.,Ltd.,Guangzhou 510170,China;School of Intelligent Manufacturing,Guangzhou Panyu Polytechnic,Guangzhou 511483,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2023年第2期125-136,共12页
Automation of Electric Power Systems
基金
中央高校基本科研业务费专项资金资助项目(2021QNA4012)。
关键词
新能源并网
低压配电网
图信号处理
低压拓扑识别
用户链路识别
renewable energy integration
low-voltage distribution network
graph signal processing(GSP)
low-voltage topology identification
user link identification