期刊文献+

分布式伪线性卡尔曼滤波纯方位跟踪 被引量:2

Distributed Pseudolinear Kalman Filter for Bearing-only Tracking
下载PDF
导出
摘要 针对纯方位跟踪(BOT)的非线性滤波和距离可观测性较差问题,提出了一种新的分布式多传感器辅助变量伪线性卡尔曼滤波器(DM-IVPLKF)。该滤波器利用辅助变量伪线性卡尔曼滤波器(IVPLKF)独立处理目标测量值,通过偏差补偿伪线性卡尔曼滤波器(偏差补偿PLKF)解决由于量测向量与伪线性噪声相关而产生的偏差,将递归辅助变量估计方法嵌入偏差补偿PLKF中,对目标状态估计和协方差进行修正。所提算法利用多传感器最优信息融合准则,对目标状态进行融合估计。然后,推导了多传感器BOT的克拉默-拉奥下界(CRLB)。通过仿真实验,将所提算法与传统算法进行对比,仿真结果证明了所提算法具有较高的跟踪精度。 A new distributed multi-sensor instrumental variable pseudolinear Kalman filter(DM-IVPLKF) is proposed to solve the problems of nonlinear filtering and poor range observability of bearing-only tracking(BOT). The filter processes the target measurement independently by using an instrumental variable pseudolinear Kalman filter(IVPLKF), tackled the bias arising from the correlation between measurement vector and pseudolinear noise by bias compensated pseudolinear Kalman filter(PLKF). The recursive instrumental variable estimation method is embedded into bias compensated PLKF to modify the target state estimation and covariance. The multi-sensor optimal information fusion criterion is used to estimate the target state. Then, the Cramer-Rao lower bound(CRLB) of multi-sensor BOT is derived. Through simulation experiments, the proposed algorithm is compared with the traditional algorithm, and the simulation results show that the proposed algorithm has high tracking accuracy.
作者 张俊根 ZHANG Jun-gen(School of Electrical and Information Engineering,North Minzu University,Yinchuan 750021,China)
出处 《控制工程》 CSCD 北大核心 2023年第4期739-745,共7页 Control Engineering of China
基金 宁夏自然科学基金资助项目(2021AAC03226)。
关键词 伪线性卡尔曼滤波器 分布式多传感器 纯方位跟踪 辅助变量 Pseudolinear Kalman filter distributed multi-sensor bearing-only tracking instrumental variable
  • 引文网络
  • 相关文献

参考文献2

二级参考文献18

  • 1李达,李少洪.一种新的地心地固坐标系传感器配准算法[J].系统工程与电子技术,2007,29(1):143-146. 被引量:4
  • 2Bar-shalom Y, Li X R. Multitarget-multisensor tracking : principlesand techniques[M]. Storrs: YBS Publishing, 1995.
  • 3Bar-shalom Y, Li X R, Kirubarajan T. Estimation with application to tracking and navigation: theory, algorithm, and software[M]. New York:Wiley,2001.
  • 4Merwe van der R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Portland: Oregon Health Sciences University,2004.
  • 5Song T, Speyer J. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements[J]. IEEE Trans. on Automatic Control, 1985,30(10) : 940 - 949.
  • 6Galkowski P J, Islam M A. An alternative derivation of modified gain function of song and speyer[J]. IEEE Trans. on Automatic Control, 1991,36(11) : 1322 - 1326.
  • 7Guo F, Sun Z, Huangfu K. A modified covariance extended Kalman filtering algorithm in passive location [C]//Proc. of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003 : 307 - 311.
  • 8Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covarianees in filters and estimators[J]. IEEE Trans. on Automatic Control, 2000,45 (3) : 477 - 482.
  • 9Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Trans. on Automatic Control ,1993, 38(2) : 294 - 297.
  • 10Johnston L A, Krishnamurthy V. Derivation of a sawtooth iterated extended Kalman smoother via the AECM algorithm [J]. IEEE Trans. on ,Signal Processing, 2001, 49 (9): 1899 -1909.

共引文献13

同被引文献17

引证文献2

;
使用帮助 返回顶部