期刊文献+

面向工业监控典型监督任务的深度迁移学习方法:现状、挑战与展望 被引量:8

Deep transfer learning methods for typical supervised tasks in industrial monitoring:state-of-the-art,challenges,and perspectives
原文传递
导出
摘要 基于深度迁移学习的工业监控方法在近年来获得了大量研究关注,特别是在以故障诊断、软测量等为代表的工业监控典型监督任务中.通过挖掘与迁移相似源域的知识来完成对目标域的建模,这类方法为实际工业场景中变工况等原因导致的跨域监控问题提供了新的思路.本文系统梳理了面向工业监控典型监督任务的深度迁移学习方法,并将其分为基于模型迁移、基于样例迁移与基于特征迁移的工业监控方法.在此基础上,对不同类方法的基本研究思想在故障诊断与软测量任务中的研究进展进行了详细阐述.随后,从实际工业场景的复杂欠数据问题、可迁移性的量化与负迁移问题、工业过程的动态特性问题等角度,指出了当前基于深度迁移学习的工业监控研究中存在的挑战,并对该领域的未来研究方向做出进一步展望. Deep transfer learning-based industrial monitoring methods have received considerable research attention in recent years,especially in typical industrial monitoring tasks,including fault diagnosis and soft sensor developments.Such methods mine and transfer knowledge from similar source domains to model the data in the target domain.They provide a new perspective for cross-domain industrial monitoring problems caused by varying conditions in actual scenarios.This survey systematically sorts the deep transfer learning methods for typical supervised tasks in industrial monitoring and classifies them into model-based,instance-based,and feature-based approaches.Subsequently,it introduces the basic ideas and state-of-the-art approaches in fault diagnosis and soft sensor development of different categories.Finally,from the perspectives of complexly limited data,evaluation of transferability and negative transfer problems,and the dynamic characteristics of industrial processes,the survey highlights the current challenges in cross-domain industrial monitoring and points to future research areas in this field.
作者 柴铮 汪嘉业 赵春晖 丁进良 孙优贤 Zheng CHAI;Jiaye WANG;Chunhui ZHAO;Jinliang DING;Youxian SUN(College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2023年第5期821-840,共20页 Scientia Sinica(Informationis)
基金 国家自然科学基金杰出青年基金(批准号:62125306) 国家自然科学基金重点项目(批准号:62133003) 流程工业综合自动化国家重点实验室开放课题基金(批准号:2020-KF-21-07)资助。
关键词 迁移学习 深度学习 跨域工业监控 故障诊断 软测量 transfer learning deep learning cross-domain industrial monitoring fault diagnosis soft sensor
  • 相关文献

参考文献3

二级参考文献65

  • 1袁小锋,王雅琳,阳春华,桂卫华.深度学习在流程工业过程数据建模中的应用[J].智能科学与技术学报,2020(2):107-115. 被引量:13
  • 2吴宏鑫.智能特征模型和智能控制[J].自动化学报,2002,28(S1):30-37. 被引量:9
  • 3黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用[J].动力工程,2004,24(4):542-547. 被引量:28
  • 4韩志刚,汪国强.无模型控制律串级形式及其应用[J].自动化学报,2006,32(3):345-352. 被引量:23
  • 5工业4.0工作组(德)编;刘晓龙,郗振宇,高金金,等译.德国工业4.0战略计划实施建议.2013.09.
  • 6乌尔里希.森德勒(德)编;邓敏,李现民译.工业4.0.北京:机械工业出版社,2014.
  • 7Impulse fiir Wachstum, Beschaftigung und Innovation. Industrie 4.0 und Digitale Wirtschaft. https://www. bmwi.de/BMWi/Redaktion/PDF/I/industrie-4-0-und-digitale-wirtschaft,property=pdf'bereich=bmwi2012'sprache= de,rwb=true.pdf. 2015.
  • 8Cyber-physical systems. Program Announcements &: Information. National Science Foundation. 4201 Wilson Boulevard, Arlington, Virginia 22230, USA. 2008-09-30. Retrieved 2009-07-21. http://www.nsf.gov/publications/ pub_summ.jsp?ods_key=nsf08611.
  • 9Nie Y, Biegler L T, Wassick J M. Integrated scheduling and dynamic optimization of batch processes using state equipment networks. Aiche J, 2012, 58:3416-3432.
  • 10Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Ann Rev Control, 2014 38:81-92.

共引文献105

同被引文献97

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部