期刊文献+

基于改进SSD模型和自适应滤波算法的水面漂浮物目标检测跟踪方法 被引量:1

Detection and Tracking Method of Floating Objects on Water Surface Based on Improved SSD Model and Adaptive Filtering Algorithm
下载PDF
导出
摘要 水面漂浮物严重破坏河道景观和水生态环境,通过摄像头实施河湖可视化监管以改善河湖面貌,已成为积极落实“河湖长制”政策的重要技术手段。但由于河流环境复杂多样,存在水波扰动、动态光影和强光反射等诸多噪声问题,现有方法难以满足水面漂浮物实际管理需求。本文结合单帧检测与多帧滤波,提出了一种基于深度学习的水面漂浮物目标智能检测跟踪方法。在单帧检测中,删除5×5及以下低分辨率特征图,通过特征求和方式增强76×76高分辨率特征图以提升单步多框目标检测(single shot multibox detector,SSD)在小尺度漂浮物目标的检测精度;在多帧滤波中,基于时空相关性和运动信息构建自适应滤波(adaptive filter,AF)算法框架,计算视频帧中帧与帧之间的关联性,根据漂浮物目标的空间位置变化幅度自适应删除偏离运动轨迹的漂浮物目标检测结果,以降低漂浮物跟踪漂移;在信息融合阶段,通过特征对比融合检测和滤波信息,实现检测信息和跟踪信息动态互补,并以不同检测跟踪场景数据集进行训练与验证。结果表明:在简单水面场景下中心位置误差为8个像素点时,该方法的检测跟踪精度达到100%,成功率面积为0.94,平均速度达到17.27 fps,计算复杂度为7.18×10~9;在复杂水面场景下中心位置误差为10个像素点时,该方法的跟踪精度和成功率面积分别为93.24%和0.81,平均速度和计算复杂度分别为15.02 fps和8.76×10~9,在复杂环境下兼顾了检测跟踪精度和效率。 The floating objects on water surfaces seriously damage river landscapes and water ecological environments.However,due to the complex and diverse river environments,there are many noise problems such as water wave disturbance,dynamic light and shadow,and strong light reflection that may reduce the accuracy of image-based object detection.To solve the problem of floating object detection and tracking in complex environments,a deep learning-based intelligent detection and tracking method for floating object targets on the water surface is proposed by combining single-frame detection and multi-frame filtering.In single-frame detection,low-resolution feature maps of 5×5 and below are removed,and high-resolution feature maps of 76×76 are enhanced by feature-added technique to improve the detection accuracy of the SSD detection algorithm for small-scale floating objects.In multi-frame filtering,an adaptive filtering algorithm framework is constructed based on spatial-temporal correlation and motion information to calculate the correlation between frames in a video frame and adaptively remove the detection results of floater targets that deviate from the motion trajectory according to the magnitude of change in the spatial position of the floater target to reduce floater tracking drift.In the information fusion stage,the detection and filter information are fused by feature comparison to achieve dynamic complementarity between detection and tracking information and are trained and validated with different detection and tracking scene datasets.The results show that the method achieves 100%detection and tracking accuracy,0.94 success rate area,17.27 fps average speed,and 7.18×109 computational complexities in simple water scenes with a center location error of 8 pixels.The tracking accuracy and success rate area for a center location error of 10 pixels in complex water scenes are 93.24%and 0.81 respectively,and the average speed and computational complexity are 15.02 fps and 8.76×109 respectively,balancing detection and tracking accuracy and efficiency in complex environments.
作者 陈任飞 彭勇 吴剑 李昱 岳廷秀 CHEN Renfei;PENG Yong;WU Jian;LI Yu;YUE Tingxiu(Faculty of Infrastructure Eng.,Dalian Univ.of Technol.,Dalian 116024,China;Artificial Intelligence Inst.,Dalian Univ.of Technol.,Dalian 116000,China)
出处 《工程科学与技术》 EI CAS CSCD 北大核心 2023年第4期119-129,共11页 Advanced Engineering Sciences
基金 国家自然科学基金项目(71874021 71974024) 大连理工大学人工智能研究院项目(05090001)。
关键词 深度学习 水面漂浮物 检测跟踪 特征融合 deep learning floating objects on the water surface detection and tracking feature fusion
  • 相关文献

参考文献11

二级参考文献59

共引文献258

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部