期刊文献+

一种改进的PSO算法在含高比例风电系统中的应用 被引量:1

Application of an Improved PSO Algorithm in the Highproportioned Wind Power System
下载PDF
导出
摘要 考虑到风电场等不确定性电源的机组调度策略,高比例风电的接入给多目标节能减排发电调度带来了严峻的挑战。为了促进可再生能源的消纳,该文在基本粒子群算法(Particle Swarm Optimization,PSO)的基础上,通过改进无标度网络生成过程中的择优与增长连接机制,提出了一种基于高聚集度的无标度网络邻域结构的粒子群算法(PSO with Highly-Clustered Scale-free Neighborhood,HCSN-PSO),并采用条件风险价值量化出风电不确定性带来的风险损失,综合考虑发电成本、弃风成本和风险损失建立了多目标机组调度策略的数学模型。最后根据修改的IEEE39节点算例进行了仿真计算,结果证明了所提模型与改进算法在解决高比例风电场的多目标机组调度策略上具有一定的有效性和实用性。 Considering the unit scheduling strategy of power supply with uncertainty such as wind power farms,the assess of high-proportioned wind power brings severe challenges to multi-target energy-conservation emission-reduction power generation dispatching.In order to promote the consumption of renewable energy,based on the basic particle swarm optimization(PSO),this paper proposes a PSO with highly-clustered scale-free neighborhood(HCSN-PSO)by improving the connection mechanism of preferential and growth in the process of scale-free network generation,uses conditional risk value to quantify the risk loss caused by the uncertainty of wind power,establishes a mathematical model of the multi-target unit scheduling strategy by comprehensively considering power generation cost,curtailment cost and risk loss,and finally carries out simulation calculation according to the modified IEEE39 node example.The results show that the proposed model and improved algorithm have certain effectiveness and practicality in solving the multi-target unit scheduling strategy of high-proportioned wind power farms.
作者 唐京瑞 陈勇 TANG Jingrui;CHEN Yong(Institute of Intelligent Manufacturing and Automobile,Chongqing Chemical Industry Vocational College,Chongqing,401220 China;Department of Guang'an Power Supply Bureau,State Grid Corporation,Guang'an,Sichuan Province,638500 China)
出处 《科技资讯》 2023年第15期10-15,共6页 Science & Technology Information
基金 重庆化工职业学院创新创业项目(项目编号:HZY202214315010)。
关键词 高比例风电 HCSN-PSO算法 条件风险价值 多目标 机组组合 High proportion wind power HCSN-PSO algorithm Conditional value at risk Multi-objective Unit commitment
  • 相关文献

参考文献9

二级参考文献112

  • 1Wei HU,Yong MIN,Yifan ZHOU,Qiuyu LU.Wind power forecasting errors modelling approach considering temporal and spatial dependence[J].Journal of Modern Power Systems and Clean Energy,2017,5(3):489-498. 被引量:7
  • 2詹俊鹏,郭创新,吴青华,温柏坚.快速群搜索优化算法及其在电力系统经济调度中的应用[J].中国电机工程学报,2012,32(S1):1-6. 被引量:16
  • 3Matthias D. Galus,Stephan Koch,Goeran Andersson.Provision of Load Frequency Control by PHEVs, Controllable Loads, and a Cogeneration Unit. IEEE Transactions on Industrial Electronics . 2011
  • 4Beibei Wang,Dennice F. Gayme,Xiaocong Liu,Chenghao Yuan.Optimal Siting and Sizing of Demand Response in a Transmission Constrained System with High Wind Penetration[J]. International Journal of Electrical Power and Energy Systems . 2014
  • 5Khyati D. Mistry,Ranjit Roy.Impact of demand response program in wind integrated distribution network[J]. Electric Power Systems Research . 2014
  • 6Hyung-Geun Kwag,Jin-O Kim.Optimal combined scheduling of generation and demand response with demand resource constraints[J]. Applied Energy . 2011
  • 7Naveen Venkatesan,Jignesh Solanki,Sarika Khushalani Solanki.Residential Demand Response model and impact on voltage profile and losses of an electric distribution network[J]. Applied Energy . 2012
  • 8P. Finn,C. Fitzpatrick,D. Connolly.Demand side management of electric car charging: Benefits for consumer and grid[J]. Energy . 2012 (1)
  • 9Evolutionary algorithm with fuzzy numbers for planning active distribution network[J]. Electrical Engineering . 2012 (3)
  • 10Ma O,Alkadi N,Cappers P,et al.Demand response for ancillary services. IEEE Transactions on Smart Grid . 2013

共引文献244

同被引文献3

引证文献1

  • 1张海龙,纪承乾,雷皓,吕昆昆,陈宏,王立新.拔河优化算法[J].科学技术创新,2024(12):86-90.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部