期刊文献+

电力元器件腐蚀环境可靠性评价与寿命预测技术研究 被引量:2

Study on Corrosion Environment Reliability Evaluation and Life Prediction Technology of Electric Power Components
下载PDF
导出
摘要 电力元器件在投入使用过程中受腐蚀环境应力的干扰和影响,严重制约着工业制造装备、设备系统可靠运行。为保证电力元器件的安全可靠运行,需在较短周期内实现对电力元器件进行可靠性评价和寿命预测。通过开展电源模块现场服役环境的监测以及获取工作参数,针对性地设计人工加速试验,并利用灰色关联度分析方法建立人工加速条件与现场服役条件之间良好关联度,通过研究电源模块关键性能参数演变规律,开展电力元器件腐蚀环境可靠性评价与寿命预测技术研究。试验结果表明人工加速试验与现场试验关联度为0.648,相关性良好,电源模块在两种条件下试验时间的关系为T_(现场)=1.11T_(加速)^(1.72),可靠性评价和寿命预测结果偏差小于±5%。由此可见,利用相关性较好的人工加速试验能够快速实现对长期服役于现场的电力元器件可靠性和寿命的精准评价和预测。 Electric power components are subjected to the interference and influence of corrosion environmental stress in the process of putting into use,which seriously restricts the reliable operation of industrial manufacturing equipment and equipment system.In order to ensure the safe and reliable operation of electronic and power components,it is necessary to realize the reliability evaluation and life prediction of power electronic components in a short period.By monitoring the field service environment of power modules and obtaining working parameters,the artificial acceleration test is designed specifically and a good correlation degree between artificial acceleration conditions and field service conditions is established by using grey correlation degree analysis method.By studying the evolution law of key performance parameters of power modules,research on reliability evaluation and life prediction technology for corrosion environment of power components is carried out.Test results show that the correlation between the artificial acceleration test and the field test is 0.648,and the correlation is good.The relationship between the test time of the power module under the two conditions is T_(Field)= 1.11T_(Acc)^(1.72),and the deviation between the results of reliability evaluation and life prediction is less than±5%.Thus,the accurate evaluation and prediction of the reliability and life of the power components in the field for a long time can be realized by using the artificial accelerated test with good correlation.
作者 易理 杨阳 秦茂 胡小山 王俊 孙新志 Yi Li;Yang Yang;Qin Mao;Hu Xiaoshan;Wang Jun;Sun Xinzhi(China National Electric Apparatus Research Institute Co.,Ltd.,Guangzhou 510300,China)
出处 《机电工程技术》 2023年第8期68-71,142,共5页 Mechanical & Electrical Engineering Technology
关键词 电力元器件 腐蚀环境 灰色关联度 可靠性 power components corrosion environment grey relational degree reliability
  • 相关文献

参考文献15

二级参考文献186

共引文献52

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部