期刊文献+

近20年印度北阿坎德邦奈尼塔尔地区农业面积变化

Change of Agriculture Area over the Last 20 Years: A Case Study of Nainital District, Uttarakhand, India
原文传递
导出
摘要 本研究对印度北阿坎德邦奈尼塔尔地区的农业用地进行了时间序列分析。该研究基于Landsat5,Landsat7and Landsat8卫星图像数据,使用随机森林分类器对该区域近21年(2000–2021年)的农业和非农业土地进行分类。陆地卫星图像使用谷歌地球引擎(GEE)平台进行处理,随机森林分类器的选择则是基于随机森林(RF)、支持向量机(SVM)和分类与回归树(CART)之间的比较分析。对总体准确度、用户准确度、生产者准确度和Kappa系数进行了评估,以确定研究区域的最佳分类器。结果表明,2021年RF、SVM和CART的总体准确率分别为96.38%、94.44%和91.94%;类似地,RF、SVM和CART的Kappa系数分别为0.96、0.89和0.81。陆地卫星在农业和非农业地区的分类图像显示,该区域在21年间(2000–2021年)农业用地减少了4.71%。该研究还表明,过去4年(即2018–2021年)该区域农业面积下降幅度最大。本研究对于发展中国家了解农用地变化并采取适当措施以保护该地区的动植物非常重要。 This study performs the time series analysis of agriculture land in the Nainital District of Uttarakhand,India.The study utilizes Landsat satellite images for the classification of agriculture and non-agriculture land over a time duration of 21 years(2000-2021).Landsat 5,7 and 8 satellites data have been used to classify the study area with Random Forest classifier.The Landsat satellite images are processed using the Google Earth Engine(GEE)platform.The selection of Random Forest classier has been based on a comparative analysis among Random Forest(RF),Support Vector Machines(SVM)and Classification and Regression Trees(CART).Overall accuracy,user accuracy and producer accuracy and Kappa coefficient has been evaluated to determine the best classifier for the study area.The overall accuracy for RF,SVM and CART for the year 2021 is 96.38%,94.44%and 91.94%respectively.Similarly,the Kappa coefficient for RF,SVM and CART was 0.96,0.89,0.81 respectively.The classified images of Landsat in agriculture and non-agriculture area over a period of 21 years(2000-2021)shows a decrement of 4.71%in agriculture land which is quite significant.This study has also shown that the maximum decrease in agriculture area in last four years,i.e.,from 2018 to 2021.This kind of study is very important for a developing country to access the change and take proper measure so that flora and fauna of the region can be maintained.
作者 Saurabh PARGAIEN Rishi PRAKASH Ved Prakash DUBEY Saurabh PARGAIEN;Rishi PRAKASH;Ved Prakash DUBEY(Department of Electronics and Communication Engineering,Graphic Era(Deemed to be University),Dehradun 248002,India;Department of Computer Sciences and Engineering,Graphic Era Hill University,Dehradun 248002,India)
出处 《Journal of Resources and Ecology》 CSCD 2023年第5期983-990,共8页 资源与生态学报(英文版)
关键词 机器学习 土地分类 谷歌地球引擎 machine learning land classification
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部