期刊文献+

改进ORB特征提取算法的ORB-SLAM2定位研究 被引量:1

Research on ORB-SLAM2 Localization Based on Improved ORB Feature Extraction Algorithm
下载PDF
导出
摘要 针对ORB(oriented fast and rotated brief)算法提取图片特征时存在的特征点分布不均匀问题,提出了一种改进的ORB算法。通过密度峰值聚类算法计算四叉树分割后的各区域特征点密度峰值,并对密度峰值高的区域使用四叉树多次分割;同时在初始阈值(iniThFAST)和最小阈值(minThFAST)中加入中间阈值(middleThFAST),提高特征点灰度值差值,减少冗余特征点提取,提高图片特征点均匀性。对特征点提取与匹配进行了实验验证,结果表明改进算法对比传统ORB算法在均匀度和匹配效率方面均有明显提升。结合ORB-SLAM2定位实验表明,改进算法的定位精度平均提高16.6%,每帧追踪时间平均减少12.4%,有效保证实际定位过程的精确性和实时性。 Aiming at the uneven distribution of feature points in image feature extraction by ORB(oriented fast and rotated brief)algorithm,an improved ORB algorithm is proposed.The peak density of feature points in each region after quadtree segmentation is calculated by density peak clustering algorithm,and the region with high density peak is segmented by quadtree multiple times.At the same time,the intermediate threshold(middleThFAST)is added to the initial threshold(iniThFAST)and minimum threshold(minThFAST)to improve the difference of the gray value of feature points,reduce the extraction of redundant feature points,and improve the uniformity of feature points.The experimental verification of feature point extraction and matching shows that the improved algorithm has obvious improvement in uniformity and matching efficiency compared with the traditional ORB algorithm.Combined with the positioning experiment of ORB-SLAM2,the positioning accuracy of the improved algorithm is improved by 16.6%on average,and the tracking time of each frame is reduced by 12.4%on average,which effectively ensures the accuracy and real-time performance of the actual positioning process.
作者 季莘翔 王宇钢 林一鸣 JI Shenxiang;WANG Yugang;LIN Yiming(School of Mechanical Engineering and Automation,Liaoning University of Technology,Jinzhou 121001,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第11期60-64,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 辽宁省教育厅基本科研项目(LJKMZ20220973)。
关键词 密度峰值聚类 ORB算法 特征提取 ORB-SLAM2 定位精度 density peak clustering ORB algorithm feature extraction ORB-SLAM2 positioning accuracy
  • 相关文献

参考文献9

二级参考文献49

  • 1张括嘉,张云洲,吕光浩,龚益群.基于局部语义拓扑图的视觉SLAM闭环检测[J].机器人,2019,41(5):649-659. 被引量:15
  • 2Kutter M,Bhattacharjee S K,Ebrahimi T.Towards second generation watermarking schemes[C].Kobe,Jpn:IEEE,1999.
  • 3Stephells C H A M.A combined comer and edge detector[J].Uk:alvey vision Conference,1988:47-151.
  • 4Lowe D G.Distinctive image features from scale-invafiant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 5Mikohjczyk K,Schmid C.Scale affine invariant interest point detectors[J].International Journal of computer Vision,2004,60(1):63-86.
  • 6Bas P,Chasscry J,Macq B.Geometrically invariant watermarking using feature points[J].Science in China,Series F:Information Sciences,2002,11(9):1014-1028.
  • 7Lee H,Lee c,Lee H,et al.Feature-based image watermarking method using scale-invariant keypoints[C].Jeju Island,Korea,Republic of:Springer Verlng,2005.
  • 8Schmid C,Mohr R,Bauckhage C.Comparing and evaluating interest points[C].Bombay,India:IEEE,1998.
  • 9朱海峰,赵春晖.图像特征点分布均匀性的评价方法[J].大庆师范学院学报,2010,30(3):9-12. 被引量:24
  • 10李小红,谢成明,贾易臻,张国富.基于ORB特征的快速目标检测算法[J].电子测量与仪器学报,2013,27(5):455-460. 被引量:62

共引文献97

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部