期刊文献+

面向离子电流检测的火焰内电子输运机理研究

Electron Transport Mechanism in Flame for Ion Current Detection
下载PDF
导出
摘要 离子电流检测技术有望解决未来点燃式发动机缸内实时诊断及精准反馈难题.业内对阳离子在离子电流形成中的作用已有较多研究,但对电子所扮演角色还缺乏系统分析及原理认知.本研究基于所构建的电子输运动力学平衡假设估计方法,估计了电子在火焰内的迁移率及扩散系数等关键参数.进而构建了定容燃烧弹离子电流形成机理模型,分析了不同外电场配置下火焰内电子的输运机制.得出结论在1 kV的低电压下,火焰内电子以双极扩散的方式运动;而在20 kV的高电压下,电子以单极扩散的形式,越过火焰锋面区域并到达探针附近. Ion current detection technology is expected to solve the problems of real-time diagnosis and accurate feedback in the cylinder of spark ignition engine in the future.There have been many researches on the role of cations in ion current formation,but there is still a lack of systematic analysis of the role of electrons and knowledge of its principle.In this study,the key parameters,such as electron mobility and diffusion coefficient in flame,were estimated based on the proposed method of mechanical equilibrium hypothesis.Then the formation mechanism model of ion current in constant volume combustion chamber(CVCC)was constructed.The transport mechanism of electrons in flame under different external electric field configurations was analyzed.It is concluded that the electrons in flame move in the ambipolar diffusion mode at the voltage of 1 kV.At the voltage of 20kV,electrons spread across the flame front region in a form of unipolar diffusion and reach the probe.
作者 董光宇 王泽 黄国钊 倪孝慈 吴志军 李理光 Dong Guangyu;Wang Ze;Huang Guozhao;Ni Xiaoci;Wu Zhijun;Li Liguang(School of Automotive Studies,Tongji University,Shanghai 201804,China)
出处 《燃烧科学与技术》 CAS CSCD 北大核心 2023年第6期617-623,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(52176126) 南昌汽车创新研究院资助项目(TPD-TC202010-11).
关键词 离子电流 电子 动力学平衡假设 迁移率 输运机理 ion current electrons dynamic equilibrium hypothesis mobility transport mechanism
  • 相关文献

参考文献3

二级参考文献14

  • 1武得钰,傅茂林,李建权,顾笑映.火花点火发动机爆震强度评价指标的研究[J].内燃机学报,1997,15(1):62-70. 被引量:25
  • 2[1] Andre S, Raymond R, Thomas B. An ionization equilibrium analysis of the spark plug as an ionization sensor[R]. SAE Paper, 960337. Washington, USA: Society of Automotive Engineers Inc, 1996. 452~457.
  • 3[2] Kwong M C, Kyung W K. Measurement and analysis of knock in a SI engine using the cylinder pressure and block vibration signals[R]. SAE Paper, 940146. Washington, USA: Society of Automotive Engineers Inc, 1994. 56~62.
  • 4[3] Norihiko N. Detection of higher frequency vibration to improve knock controllability[R]. SAE Paper, 871912. Washington, USA: Society of Automotive Engineers Inc, 1987. 21~28.
  • 5Rizzoni G. Diagnosis of individual cylinder misfires by signature analysis of crankshaft speed fluctuations[A]. In: SAE Paper[C]. Warrendale, USA: Society of Automotive Engineers Inc, 1989,89094.
  • 6Lars Eriksson, Lars Nielsen. Ignition control by ionization current Interpretation[A]. In: SAE Paper[C]. Warrendale,USA: Society of Automotive Engineers Inc,1996,960045.
  • 7Heywood John B. Internal Combustion Engine Fundamentals[M]. New York: Mcgraw-hill Book Company, 1988.
  • 8Dirk Schneider. An Experimental Study of Correlations Between Ionic Current and Operating Parameters in SI Engine[D]. USA, Bell and Howell Information and Learning,2000, 10-22.
  • 9吴筱敏.采用离子电流分析法实现发动机爆震信号的正确检测[J].内燃机学报,1998,16(4):453-459. 被引量:8
  • 10刘世元,杜润生,杨叔子.利用神经网络诊断内燃机失火故障的研究[J].内燃机学报,1999,17(1):67-70. 被引量:17

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部