期刊文献+

基于多层感知器神经网络的住院病案内涵质量预测模型研究 被引量:1

Study on the Connotation Quality Prediction Model of Inpatient Medical Record Based on Multi-layer Perceptron Neural Network
下载PDF
导出
摘要 目的/意义探讨影响住院病案内涵质量的重要因素,为病案内涵质控提供预测模型,提高住院病案内涵质量。方法/过程收集2022年6—11月上海市第一人民医院经质控督查的住院病案590份,单因素分析初筛影响因素,构建住院病案内涵质量的多层感知器神经网络预测模型。结果/结论预测模型的AUC为0.940,95%CI为0.928~0.951,灵敏度为93.73%,特异度为78.22%。影响病案评为甲级的独立因素集中在手术安全核查表、首次主任查房分析、手术护理记录单等方面。多层感知器神经网络内涵质量预测模型的预测效能较好,能够为住院病案内涵质量管理提供理论参考。 Purpose/Significance To explore the important factors affecting the connotation quality of inpatient medical records,and to provide model prediction and improve the connotation quality of inpatient medical records.Method/Process A total of 590 inpatient medical records monitored by quality control in Shanghai First People’s Hospital from June to November 2022 are collected.The influencing factors are initially screened by single factor analysis,and a multi-layer perceptron neural network prediction model for the connotation quality of inpatient medical records is constructed.Result/Conclusion The area under the curve(AUC)of the prediction model is 0.940,95%CI is 0.928~0.951,the sensitivity is 93.73%,and the specificity is 78.22%.The top three independent factors affecting the rating of a case as grade A are concentrated in the surgical safety checklist,the analysis of the first director’s ward round,and the surgical nursing record.The multi-layer perceptron neural network connotation quality prediction model has good prediction efficiency,which provides theoretical references for the connotation quality management of inpatient medical records.
作者 袁筱祺 赵英英 YUAN Xiaoqi;ZHAO Yingying(Medical Department of Shanghai First People’s Hospital,Shanghai 200080,China)
出处 《医学信息学杂志》 CAS 2023年第11期35-40,共6页 Journal of Medical Informatics
基金 上海申康医院发展中心医疗质量安全与医疗服务模式创新项目(项目编号:SHDC12022622) 上海市第一人民医院管理创新研究项目(项目编号:YNGL-2023-21)。
关键词 神经网络 住院病案 内涵质量 预测模型 人工智能 neural network inpatient medical record connotation quality prediction model artificial intelligence
  • 相关文献

参考文献14

二级参考文献134

共引文献77

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部