期刊文献+

日志信息加权关联分析方法

Log information weighted correlation analysis method
下载PDF
导出
摘要 针对气象业务系统级、基础应用、数据库日志等重要程度不同的特点,提出了符合Apriori基本原理的增加正整数权重的日志信息关联规则分析处理方法,并通过前期zabbix采集的已知关联关系的现场数据验证该方法,结果表明此方法符合日志故障规律,适合用于故障日志信息的关联规则挖掘。 According to the characteristics of meteorological service system,such as system level,basic application,database log,etc.,this paper puts forward an analysis and processing method of log information association rules by increasing the positive integer weight,which accords with the basic principle of Apriori.The field data with known association relationship collected by zabbix in the early stage proves that this method is suitable for mining association rules of fault log information.
作者 李文钊 董晓炜 王新 赵思亮 Li Wenzhao;Dong Xiaowei;Wang Xin;Zhao Siliang(Chongqing Meteorological Information and Technology Support Center,Chongqing 401147;Chongqing Ceprei Industrial Technology Research Institutes Co.,Ltd.,Chongqing 401331)
出处 《气象水文海洋仪器》 2023年第4期23-25,共3页 Meteorological,Hydrological and Marine Instruments
基金 重庆市气象部门业务技术攻关项目(YWJSGG-202111)资助。
关键词 日志 关联分析 APRIORI算法 权重 log correlation analysis Apriori algorithm weight
  • 相关文献

参考文献3

二级参考文献33

  • 1宋卫林,徐惠民.基于最大频繁项目序列集挖掘DMFIA算法的改进[J].计算机工程与设计,2007,28(7):1493-1496. 被引量:1
  • 2LIU B, HSU W, MAY. Integrating classification and association rule mining [C]// Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining ( KDD-98). New York: AAAI, 1998: 80 - 86.
  • 3LI W M, HAN J W, PEI J. CMAR: accurate and efficient classification based on multiple class-association rules [C]//Proceedings of the 1st IEEE International Conference on Data Mining (ICDM 2001 ). Washington: IEEE Computer Society, 2001: 369- 376.
  • 4YIN X X, HAN J W. CPAR: classification based on predictive association rules [C]// Proceedings of the 2003 SIAM International Conference on Data Mining (SDM'03). San Francisco: [ s. n.], 2003:34 - 42.
  • 5COENEN F, LENG P. Data structures for association rule mining: t-trees and p-trees [J]. IEEE Transaction in KnowIedge and Data Engineering, 2004, 16(6) : 774 -778.
  • 6COENEN F. LUCS-KDD DN Software (Version 2) [ EB/OL]. [2007 -04 -02]. http://www. csc. liv. ac. uk/- frans/KDD/Software/ LUCS_KDD_DN/.
  • 7AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules [C]// Proceeding of the 1994 International Conference on Vary Large Data Bases. Santiago: Morgan Kaufmann, 1994:487 -499.
  • 8BLAKE C L, MERZ C J. UCI Repository of machine learning databases [EB/OL]. [2007 -04 - 15]. http://www.ics. uci. edu/- mlearn/MLRepository, html.
  • 9宋长新,马克.改进的Eclat数据挖掘算法的研究[J].微计算机信息,2008,24(24):92-94. 被引量:17
  • 10汪西原,汪西莉.启发式搜索策略(爬山法)的改进与实现[J].陕西师大学报(自然科学版),1999,27(1):58-58. 被引量:7

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部