期刊文献+

基于机器学习嵌接有限元的蠕变时效成形全过程形性演变预测

Prediction of shape and property evolution in whole process of creep aging forming based on machine learning embedded into finite element
下载PDF
导出
摘要 针对蠕变时效成形中存在的蠕变变形和时效强化动态交互耦合作用导致成形精度难以准确预测和控制问题,提出了一种基于机器学习的方法来预测蠕变时效过程中的形性演变。利用单向拉伸蠕变时效实验数据训练神经网络(NN)模型,用以描述蠕变时效本构关系。对比统一本构模型、反向传播NN(BPNN)模型、粒子群优化BPNN(PSO-BPNN)模型、遗传算法优化BPNN(GA-BPNN)模型对形性演变的预测效果,发现GA-BPNN和PSO-BPNN模型分别对蠕变应变和屈服强度具有较高的拟合精度。通过子程序将NN模型与有限元程序嵌接,实现了蠕变时效成形全过程的模拟,预测了铝合金板材蠕变变形和屈服强度的演变。针对回弹,相较于统一本构模型26.5%的误差,GA-BPNN模型的预测精度有较大提高,误差仅为5.1%。证明了采用机器学习的方法探寻蠕变时效本构关系并通过BPNN模型嵌接有限元模拟实现形性演变精确预测具有可行性。 Aiming at the problem of the difficulty for prediction and control of forming accurate due to the dynamic interaction between creep deformation and aging strengthening in creep aging forming,a method based on machine learning was presented to predict the evolution of shape and property during creep aging process.The data of uniaxial tensile creep aging tests was used to train the neural network(NN)model to describe the creep aging constitutive relationship.By comparing the prediction results of unified constitutive model,back propagation NN(BPNN)model,particle swarm optimization BPNN(PSO-BPNN)model and genetic algorithm optimization BPNN(GA-BPNN)model,it is found that GA-BPNN and PSO-BPNN models have higher fitting accuracy for creep strain and yield strength,respectively.The whole process of creep aging forming was simulated by embedding NN model into finite element program and the evolution of creep deformation and yield strength of aluminum alloy sheet was predicted.For springback,compared with the error of 26.5%of the unified constitutive model,the prediction accuracy of GA-BPNN model is greatly improved,and the error is only 5.1%.The feasibility of exploring the creep aging constitutive relationship by the machine learning method and realizing the accurate prediction of shape and property evolution through finite element simulation with embedded BPNN model was proved.
作者 雷超 李小龙 刘君 边天军 李恒 贾磊 唐文亭 LEI Chao;LI Xiao-long;LIU Jun;BIAN Tian-jun;LI Heng;JIA Lei;TANG Wen-ting(School of Materials Science and Engineering,Xi′an University of Technology,Xi′an 710048,China;State Key Laboratory of Solidification Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi′an 710072,China)
出处 《塑性工程学报》 CAS CSCD 北大核心 2024年第1期60-70,共11页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(51905424)。
关键词 蠕变时效成形 形性演变 机器学习 神经网络 有限元 creep aging forming evolution of shape and property machine learning neural network finite element
  • 相关文献

参考文献11

二级参考文献85

  • 1詹梅,杨合,栗振斌.管材数控弯曲回弹规律的有限元分析[J].材料科学与工艺,2004,12(4):349-352. 被引量:24
  • 2周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212-216. 被引量:46
  • 3许旭东,李光俊.飞机导管数字化生产线探讨[J].航空制造技术,2005,48(9):83-85. 被引量:25
  • 4董本清,钟清流,刘长生.SVM在金属塑性成形摩擦系数预测中的应用研究[J].科学技术与工程,2006,6(22):3572-3574. 被引量:2
  • 5SUN Sheng-di,ZONG Ying-ying,SHAN De-bin. Hot deformation behavior and microstructure evolution of TC4 titanium alloy[J].Transactions of Nonferrous Metals Society of China,2010,(11):2181-2184.doi:10.1016/S1003-6326(09)60439-8.
  • 6Songwon Seo,Oakkey Min,Hyunmo Yang. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J].International Journal of Impact Engineering,2005.735-754.
  • 7R Kapoor,D Pal,J K Chakravartty. Use of artificial neural networks to predict the deformation behavior of Zr 2.5Nb 0.5Cu[J].Journal of Materials Processing Technology,2005,(02):199-205.doi:10.1016/j.jmatprotec.2005.03.022.
  • 8张德丰.MATLAB神经网络仿真与应用[M]北京:电子工业出版社,2009.
  • 9飞思科技产品研发中心.神经网络理论与MATLAB7实现[M]北京:电子工业出版社,2006.
  • 10GhaboussI J,Garrett J J,WU X. Material modeling with neural networks[A].Swansea,UK,1990.701-717.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部