摘要
[目的/意义]在国家自然科学基金项目申请中,同一个学者在不同时间使用不同学科基金代码,这在一定程度上促进了跨学科知识的融合与生长。为此,文章基于国家自然科学基金跨学科申请视角,挖掘跨学科知识及其融合生长路径。[方法/过程]首先,结合自然科学基金学科申请代码的层级结构,改进并优化了跨学科性测度指标,识别最具有跨学科性的跨学科知识。随后,构建跨学科知识与一级学科的二类型异质网络,并基于RankClus实现了跨学科知识社区发现与生长路径挖掘。[结果/结论]研究发现,存在显著的12个跨学科知识主题与6个明显的知识生长路径,其知识生长路径分别是生命科学部-医学科学部(C-H)、化学科学部-工程与材料科学部(B-E)、生命科学部—地理科学部(C-D)、数理科学部—信息科学部—管理科学部(A-FG)、数理科学部—地理科学部—工程与材料科学部(A-D-E)、化学科学部—管理科学部(B-G)。
[Purpose/significance]In the application for NSFC projects,the same scholar uses different fund codes at different times,which promotes the integration and growth of interdisciplinary knowledge to a certain extent.Therefore,based on the interdisciplinary application for the National Natural Science Foundation of China,this paper explores interdisciplinary knowledge and its integrated growth path.[Method/process]The interdisciplinary measurement indicators were improved and optimized based on the hierarchical structure of NSFC discipline application code to identify the most interdisciplinary knowledge.Subsequently,a type of heterogeneous network of interdisciplinary knowledge and first-level disciplines was constructed,and interdisciplinary knowledge community discovery and growth path mining were realized based on RankClus.[Result/conclusion]Through research,it is found that there are 12 significant interdisciplinary knowledge clusters and 6 obvious interdisciplinary knowledge growth paths.Their interdisciplinary knowledge paths are Life Science-Medical Science(C-H),Chemical Science-Engineering and Materials Science(B-E),Life Science-Earth Science(C-D),Mathematical and Physical Science-Information Science-Management Science(A-F-G),Mathematical and Physical Science-Earth Science-Engineering and Materials Science(A-D-E),Chemical Science-Management Science(B-G).
作者
吴小兰
章成志
WU Xiaoan;ZHANG Chengzhi(School of Journalism and Communication,Nanjing Normal University,Nanjing 210024;Research Center for Financial Media Communication and Public Opinion Governance,Nanjing Normal University,Nanjing 210024;Department of Information Management,School of Economics&Management,Nanjing University of Science and Technology,Nanjing 210094)
出处
《科技情报研究》
CSSCI
2024年第2期58-71,共14页
Scientific Information Research
基金
江苏高校哲学社会科学研究重大项目“基于可解释图谱的跨学科同行评审专家推荐研究”(编号:2021SJZDA176)。
关键词
跨学科知识
国家自然科学基金
知识生长路径
跨学科测度指标
interdisciplinary knowledge
National Natural Science Foundation
knowledge growth path
interdisciplinary measurement indicators