摘要
The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,including a low capacity retention,large voltage hysteresis,and low rate capability.Herein,we proposed a high-Na content honeycomb-ordered cathode,P2–Na_(5/6)[Li_(1/6)Cu_(1/6)Mn_(2/3)]O_(2)(P2-NLCMO),with combined cationic/anionic redox.Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found P6322 symmetry.In addition,advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers,achieving fully active Cu^(3+)/Cu^(2+) redox and stabilized ARR with interactively suppressed local distortion.With a meticulously regulated charge/discharge protocol,both the cycling and rate capability of P2-NLCMO were significantly.
基金
supported by the National Natural Science Foundation(NSFC)of China(52002394)
Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)
Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020006).