期刊文献+

融合多头自注意力的AeroMACS自适应调制编码算法

AeroMACS Adaptive Modulation Coding Algorithm Combining Multi-headed Self-Attention
下载PDF
导出
摘要 航空移动机场通信系统(AeroMACS)因传输速率高、安全性好等优点成为机场、空地通信网络的重要组成部分。针对飞机起飞、着陆高速移动阶段的信道快速时变导致信道状态信息(CSI)过时和多普勒频移大等引起通信质量恶化的问题,利用多头自注意力机制,提出了基于Transformer神经网络的信道预测方法。根据实时预测的信噪比(SNR)来调整AeroMACS的WiMAX和5G双模的调制编码方案(MCS)。仿真结果表明,与其他3种人工智能方法相比,所提出的基于Transformer网络的信道预测方法能够达到较高的准确率,并提升了系统的总吞吐量,对缓解信道参数过时现状和提高系统通信性能具有良好的促进作用。 With the advantages of high transmission rate and great security,the Aeronautical Mobile Airport Communications System(AeroMACS)has become an important part of the airport and air-ground communication network.Aiming at the problems of outdated Channel State Information(CSI)caused by fast time-varying channel during the high-speed movement phase of aircraft take-off and landing,and worsening of communication quality caused by large Doppler frequency shifts,a channel prediction method based on transformer neural-network is proposed by using a multi-head self-attention mechanism.Modulation Coding Scheme(MCS)for WiMAX and 5G dual-mode of AeroMACS is adjusted according to the Signal-to-Noise Ratio(SNR)predicted in real time.Simulation results show that,compared with the other three artificial intelligence methods,the proposed transformer network-based channel prediction method achieves higher accuracy and enhances the total throughput of the system,which can effectively cope with the problem of outdated CSI and improve the system communication performance.
作者 程龙 孟繁栋 毛建华 袁树德 姜博文 CHENG Long;MENG Fandong;MAO Jianhua;YUAN Shude;JIANG Bowen(School of Communication and Information Engineering,Shanghai University,Shanghai 200000,China;Shanghai Aircraft Design and Research Institute,Shanghai 201000,China)
出处 《电光与控制》 CSCD 北大核心 2024年第6期36-41,共6页 Electronics Optics & Control
基金 部级项目(2022YFB3904300)。
关键词 航空移动机场通信系统 信道预测 多头自注意力 调制编码方案 系统吞吐量 AeroMACS channel prediction multi-headed self-attention modulation and coding scheme system throughput
  • 相关文献

参考文献6

二级参考文献22

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部