期刊文献+

一种基于TransUNet的SAR影像水体提取及洲滩面积变化监测应用 被引量:1

Water extraction from SAR images based on TransUNet and its application in sandbar area change monitoring
原文传递
导出
摘要 针对面向合成孔径雷达(SAR)影像的高精度水体提取工作仍然存在较大的挑战,该文基于TransUnet深度学习模型和COSMO-SkyMed卫星的高分辨率(3 m)数据,深度挖掘Transformer模型的全局上下文捕捉能力和U-Net模型多尺度特征提取优势,建立了小样本数据集下的SAR影像水体提取模型。实验结果表明该文算法在小面积水体提取、山体阴影误判抑制方面优势明显,其水体提取结果的准确率、召回率、总体准确率、F1分数、交并比分别为89.54%、91.24%、98.01%、90.26%和82.28%,相较于U-Net模型、FCN-VGG16模型和HRNet模型,精度具有较大提升;同时采用该文的水体提取模型反演了洞庭湖区2019年7月—2020年6月的7景SAR影像的洲滩空间分布变化情况,阐明了其随季节性水位变化的年周期变化规律。 Aiming at the challenges for high-precision water body extraction from synthetic aperture radar(SAR)images,the TransUnet deep learning model and high-resolution(3 m)data from COSMO-SkyMed satellites were used to delve into the global contextual capturing capabilities of the Transformer model and the multi-scale feature extraction advantages of the U-Net model in this paper.The water body extraction model for small sample datasets of SAR images was established.Experimental results revealed pronounced advantages of the proposed algorithm in extracting small-area water bodies and mitigating misclassifications in mountainous shadow regions.The accuracy,recall,overall accuracy,F1 score,and intersection over union(IoU)of the water body extraction results were reported as 89.54%,91.24%,98.01%,90.26%,and 82.28%,respectively.These results showed a noticeable improvement compared to the Unet,FCN-VGG16,and HRNet models.Concurrently,the proposed water body extraction model was utilized to infer the spatial distribution changes of sandbars in the Dongting Lake region across seven SAR images captured from July 2019 to June 2020.This elucidated the annual cyclical variation in response to seasonal water level changes.
作者 徐康 朱茂 贺秋华 李吉平 葛春青 周海兵 王大伟 XU Kang;ZHU Mao;HE Qiuhua;LI Jiping;GE Chunqing;ZHOU Haibing;WANG Dawei(Hunan Vastitude Technology Co.,Ltd.,Changsha 410000,China;Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area,Hunan Natural Resources Affairs Center,Changsha 410004,China;Beijing Vastitude Technology Co.,Ltd.,Beijing 100080,China)
出处 《测绘科学》 CSCD 北大核心 2024年第2期55-64,共10页 Science of Surveying and Mapping
基金 洞庭湖区生态环境遥感监测湖南省重点实验室开放课题资助项目(DTH Key Lab.2021-26)。
关键词 高分辨率 SAR 深度学习 水体提取 洲滩面积变化 TRANSFORMER U-Net high-resolution SAR deep learning water body extraction sandbar area changes Transformer U-Net
  • 相关文献

参考文献7

二级参考文献55

共引文献73

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部