摘要
大语言模型和视觉语言模型在各领域的应用中展示出巨大潜力,成为研究热点。然而,幻觉、知识迁移、与人类意图对齐等问题仍然影响着大模型的性能。首先,探讨了提示工程与对齐技术基本原理,提出基于提示优化、专家反馈机制及实时调整机制的引导概念,提升了大语言模型在跨领域应用中的性能;其次,深入分析提示工程的核心技术,如多步推理处理复杂任务的原理;然后,针对各领域的实际应用,讨论提示工程的发展现状;最后,总结提示工程面临的挑战并展望其未来发展方向。提示工程在理论与应用方面的发展,为提升大模型在实际应用中的性能提供了全面的解决方案。
Large language models and vision-language models have demonstrated significant potential in various downstream applications,making it become a research hotspot.However,the issues such as hallucinations and knowledge transfer impact the performance of these models.Firstly,this paper explores the fundamental principles of prompt engineering and alignment techniques,and proposes the concept of“prescriptive”,which is based on optimizing prompts and expert feedback verification and can be adjusted in real-time.This aims to further enhance the performance of large language models in cross-domain applications.Secondly,the core technologies of prompt engineering,such as the principles of multi-step reasoning for handling complex tasks,are analyzed in depth.Additionally,the development status of prompt engineering is discussed based on practical applications in various fields.Finally,this paper summarizes the challenges faced by prompt engineering and looks into its future development directions.The development of prompt engineering in theory and application,provide comprehensive solutions for improving the performance of large models in practical applications.
作者
黄峻
林飞
杨静
王兴霞
倪清桦
王雨桐
田永林
李娟娟
王飞跃
HUANG Jun;LIN Fei;YANG Jing;WANG Xingxia;NI Qinghua;WANG Yutong;TIAN Yonglin;LI Juanjuan;WANG Fei-Yue(Department of Engineering Science,Faculty of Innovation Engineering,Macao University of Science and Technology,Macao,999078,China;Qingdao Academy of Intelligent Industries,Qingdao 266109,China;State Key Laboratory for Management and Control of Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory of Multimodal Artificial Intelligence Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《智能科学与技术学报》
CSCD
2024年第2期115-133,共19页
Chinese Journal of Intelligent Science and Technology
基金
澳门特别行政区科学技术发展基金项目(No.0145/2023/RIA3)
北京市自然科学基金-怀柔创新联合基金项目(No.L245025)。
关键词
提示工程
对齐技术
生成式AI
大语言模型
视觉语言模型
prompt engineering
alignment technology
generative artificial intelligence
large language models
vision-language models