期刊文献+

基于WOA-VMD-SSA-LSTM的中长期风电预测

MEDIUM AND LONG TERM WIND POWER FORECAST BASED ON WOA-VMD-SSA-LSTM
下载PDF
导出
摘要 针对风速预测中由于随机性和波动性使得风速预测精度不高和模型泛化性不佳的问题,提出一种基于变分模态分解(VMD)、鲸鱼优化算法(WOA)、长短期记忆神经网络(LSTM)和麻雀优化算法(SSA)的组合预测模型。首先利用WOA对VMD的核心参数(K值和惩罚系数α)进行自动寻优。经对风速时间序列进行分解之后,引入SSA优化LSTM的核心学习参数,最后整合各子分量的预测风速数据得到最终风速预测值,经过多项模型评价指标的验证,模型的RMSE、MAE、MAPE、R^(2)分别为0.0758 m/s、0.0578 m/s、1.492%和0.979,与其他单一优化预测模型WOA-VMD-LSTM和VMD-SSA-LSTM相比较,相关模型评价指标均有较显著的改观。 Aiming at the problems of low accuracy and poor generalization of wind speed forecast due to randomness and volatility,a combined prediction model based on variational mode decomposition(VMD),whale optimization algorithm(WOA),long short-term memory neural network(LSTM)and sparrow search algorithm(SSA)was proposed.Firstly,WOA is used to automatically optimize the core parameters of VMD(K value and penalty coefficientα).After decomposing the wind speed time series,SSA is introduced to optimize the core learning parameters of LSTM,and finally,the predicted wind speed data of each subcomponent is integrated to obtain the final predicted wind speed,which is verified by a number of model evaluation indicators.The RMSE,MAE,MAPE and R^(2) of the model are 0.0758 m/s,0.0578 m/s,1.492%and 0.979,respectively.Compared with other single optimization prediction models WOA-VMD-LSTM and VMD-SSA-LSTM,the relevant evaluation indicators have significantly improved.
作者 胡锐 乔加飞 李永华 孙亚萍 王兵兵 Hu Rui;Qiao Jiafei;Li Yonghua;Sun Yaping;Wang Bingbing(Department of Power Engineering,North China Electric Power University,Baoding 071066,China;CHN Energy New Energy Technology Research Institute Co.,Ltd.,Beijing 102209,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期549-556,共8页 Acta Energiae Solaris Sinica
基金 国家能源集团科技项目(GJNY2030XDXM-19-10.1)。
关键词 风速 预测分析 变分模态分解 长短期记忆神经网络 鲸鱼优化算法 wind speed predictive analysis variational mode decomposition long short-term memory neural network whale optimization algorithm
  • 相关文献

参考文献12

二级参考文献163

  • 1袁智勇,白浩,黄安迪,雷金勇,赵显秋.基于EEMD-SSA和改进ELM的短期风电功率预测方法[J].水利水电技术(中英文),2021(S01):323-331. 被引量:5
  • 2王粟,江鑫,曾亮,常雨芳.基于VMD-DESN-MSGP模型的超短期光伏功率预测[J].电网技术,2020,44(3):917-926. 被引量:47
  • 3殷豪,欧祖宏,陈德,孟安波.基于二次模式分解和级联式深度学习的超短期风电功率预测[J].电网技术,2020,44(2):445-453. 被引量:43
  • 4杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 5Fan Shu, Liao J R, Yokoyama R, et al. Forecasting the wind generation using a two-stage network based on meteorological information[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 474-482.
  • 6Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]//IEEE Power Industry Computer Applications Conference, Sydney, NSW, 2001.
  • 7Sanchez I. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006, 22(1): 43-56.
  • 8Alexandre C, Antonio C, Jorge N, et al. A review on the young history of the wind power short-term prediction[J] . Renewable and Sustainable Energy Reviews, 2008, 12(4): 1725-1744.
  • 9Barthelmie R J, Murray F, Pryor S C. The economic benefit of short-term forecasting for wind energy in the UK electricity market[J]. Energy Policy, 2008, 36(5): 1687-1696.
  • 10Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.

共引文献373

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部