期刊文献+

Confusing Object Detection:A Survey

下载PDF
导出
摘要 Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,leveraging deep learning methodologies.Despite garnering increasing attention in computer vision,the focus of most existing works leans toward formulating task-specific solutions rather than delving into in-depth analyses of methodological structures.As of now,there is a notable absence of a comprehensive systematic review that focuses on recently proposed deep learning-based models for these specific tasks.To fill this gap,our study presents a pioneering review that covers both themodels and the publicly available benchmark datasets,while also identifying potential directions for future research in this field.The current dataset primarily focuses on single confusing object detection at the image level,with some studies extending to video-level data.We conduct an in-depth analysis of deep learning architectures,revealing that the current state-of-the-art(SOTA)COD methods demonstrate promising performance in single object detection.We also compile and provide detailed descriptions ofwidely used datasets relevant to these detection tasks.Our endeavor extends to discussing the limitations observed in current methodologies,alongside proposed solutions aimed at enhancing detection accuracy.Additionally,we deliberate on relevant applications and outline future research trajectories,aiming to catalyze advancements in the field of glass,mirror,and camouflaged object detection.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第9期3421-3461,共41页 计算机、材料和连续体(英文)
基金 supported by the NationalNatural Science Foundation of China Nos.62302167,U23A20343 Shanghai Sailing Program(23YF1410500) Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23CGA34).
  • 相关文献

参考文献3

二级参考文献3

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部