摘要
随着电网升级,我国配电网迅速发展。非侵入式负荷监测作为智能电网中的先进测量技术,能准确服务电力系统用户并促进用户形成良好用电习惯,实现互利。现有非侵入式负荷分解技术存在计算量大、训练效率低等挑战,本文提出一种基于序列到点和空洞空间金字塔池化的方法。通过结合2D卷积对Seq2point模型优化,将参数量从3000万降至180万,显著提升训练效率。此外,ASPP模块的引入能更好地捕获不同尺度的特征,优化特征提取。模拟实验表明,Seq2point-ASPP方法在负荷分解效果上优于传统方法,平均MAE可达5.17,平均SAE可达0.051,具有快速计算和高实用价值的优点。
With the upgrading of power grid,China's distribution network develops rapidly.As an advanced measurement technology in smart grid,non-invasive load monitoring can accurately serve power system users and promote good usage habits to achieve mutual benefit.Although the existing non-invasive load decomposition techniques have many challenges in computation and low training efficiency,this paper proposes a method based on sequence-to-point and void space pyramid pool.By combining 2D convolution to optimize the Seq2point model,the number of parameters was reduced from 30 million to 1.8 million,significantly improving the training efficiency.In addition,the introduction of ASPP module can better capture features of different scales and optimize feature extraction.The simulation results show that the Seq2point-ASPP method is superior to the traditional method in load decomposition,with an average MAE of 5.17 and an average SAE of 0.051.It has the advantages of fast calculation and high practical value.
作者
王俊泽
郭晓雪
黎赛
WANG Junze;GUO Xiaoxue;LI Sai(School of Electronic Information,Xi'an Polytechnic University,Xi'an 710048,China)
出处
《高科技与产业化》
2024年第8期36-39,共4页
High-Technology & Commercialization
关键词
非侵入式负荷分解
金字塔池化
序列到点
深度学习
non-invasive load decomposition
pyramid pooling
sequence-to-point
deep learning