期刊文献+

基于改进边缘算法的通信光缆设备智能检测技术研究

Research on intelligent detection technology of communication optical cable equipment based on improved edge algorithm
下载PDF
导出
摘要 在无人机巡检电力通信光缆设备时将产生的视觉数据卸载到云端处理,通过边缘计算优化电力通信光缆设备的深度学习检测运算量。由ROSLink(robot operating system,ROS)从机器人操作系统提取电力通信光缆设备的数据,然后嵌入JSON进行序列化后将信息发送至云端,进而实现图像的云计算卸载。深度学习模块中DeepBrain云子系统启动云服务器的多个GPU,高速同步处理多架无人机的批量图像。实验表明,将视觉数据卸载至云端后电压降低率和功耗是机载GPU处理的50%,可延长无人机续航时间、缩短图像实时处理时间。 When the unmanned aerial vehicle inspects the power communication optical cable equipment,the gen⁃erated visual data is offloaded to the cloud for processing,and the deep learning detection calculation of the power communication optical cable equipment is optimized through edge computing.ROSLink(robot operating system,ROS)extracted the data of the Power communication optical cable equipment from the robot operating system and then embeded JSON for serialization and sent the information to the cloud,thereby achieving cloud computing offloading of the image.The DeepBrain cloud subsystem in the deep learning module activated multiple GPUs of the cloud server to process batch images of various drones simultaneously at high speed.Experiments showed that the voltage reduction rate and power consumption after offloading the visual data to the cloud were 50%of the onboard GPU processing,extending the UAV’s lifetime and shortening real-time image processing time.
作者 胡欣 沈伟 李伟 王兴龙 陈逸君 李学庆 HU Xin;SHEN Wei;LI Wei;WANG Xinglong;CHEN Yijun(State Grid Jiangsu Taizhou Power Supply Branch Co.,Ltd.,Taizhou 225300,Jiangsu China;State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210000,China)
出处 《粘接》 CAS 2024年第10期140-144,共5页 Adhesion
关键词 无人机 云计算卸载 边缘计算 深度学习 电力通信光缆设备 unmanned aerial vehicle cloud computing offloading edge computing deep learning power communication optical cable equipment
  • 相关文献

参考文献20

二级参考文献167

共引文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部