摘要
随着列车速度的大幅度提高,列车运行控制系统对铁路通信的速度和容量提出了更高的要求;然而随着通信机房扩容改造,机房内电气设备不断增多,机房起火成为威胁机房安全运行的一个高风险隐患。为此,设计了一种基于物联网的铁路通信机房环境监控系统,该系统以STC89C52单片机为控制核心,对引发机房电气火灾的常见因素(温度、湿度和烟雾浓度)开展实时数据采集,并将采集到的数据上传至云平台实现集中监控和管理,当超过预设阈值时,可通过现场蜂鸣器和平台端网页进行报警。测试结果表明该系统灵敏有效,对于发现和预防机房火灾,保障列车安全运行具有重要现实意义。
With the substantial increase of train speed,the train operation control system puts forward higher requirements for the speed and capacity of railway communication;however,with the expansion and reconstruction of the communication room,the electrical equipment in the room is increasing,and the fire in the room has become a high-risk hidden danger that threatens the safe operation of the room.To this end,this paper designs a railway communication equipment room environment monitoring system based on the Internet of Things,which takes the STC89C52 microcontroller as the control core,carries out real-time data collection of the common factors(temperature,humidity and smoke concentration)that cause electrical fires in the equipment room,and uploads the collected data to the cloud plaform to achieve centralised monitoring and management,and when it exceeds the preset thresholds,an alarm is given through the on-site buzzer and the platform end When the preset threshold is exceeded,the alarm can be made through the on-site buzzer and the platform end webpage.The test results show that the system is sensitive and effective,and it is of great practical significance for the detection and prevention of engine room fire and the safe operation of trains.
作者
陈根
管俊杰
Chen Gen;Guan Junjie(Hunan Railway Technology Vocational and Technical College,Zhuzhou Hunan 412000,China;Hunan Engineering and Technology Research Centre for High-speed Railway Operation Safety and Security,Zhuzhou Hunan 412000,China)
出处
《机械管理开发》
2024年第10期231-233,共3页
Mechanical Management and Development
基金
湖南省教育厅科学研究优秀青年项目(23B1022)
湖南铁路科技职业技术学院院级课题(HNTKY-KT-2024-7)
湖南省自然科学基金项目(2024JJ8085)。
关键词
物联网
铁路
单片机
通信机房
环境监控
集中管理
Internet of Things(loT)
railway
microcontroller
engine room environment
environmental monitoring
centralised management