摘要
随着网络用户业务需求的增长,如何实现网络切片动态和准确的资源分配是当下网络必须解决的问题。考虑传统无模型强化学习方法需要较长的模型训练时间,提出了一种基于OS-MBRL(model based RL supported by online SVM)的网络资源动态分配方法。该方法利用在线支持向量机算法构建了一个系统模型,保证在分配较少资源的情况下产生较低的服务等级协议(service level agreement,SLA)违规次数。仿真实验结果表明,与归一化优势函数(normalized advantage function,NAF)算法、深度Q网络(deep Q-network,DQN)算法和双延迟深度确定性策略梯度(twin delayed deep deterministic dolicy gradient,TD3)算法相比,该方法能够最高减少80%的SLA违规次数,同时降低9%的资源分配。
With the growth of business needs of network users,how to achieve dynamic and accurate resource allocation of network slicing is a problem that must be solved in the current network.Considering that traditional modelless reinforcement learning methods require a longer model training time,a dynamic resource allocation method based on OS-MBRL was proposed.The online support vector machines algorithm was utilized to construct a system model that could handle dynamically changing data streams and continuously update the model to adapt to new data,ensuring a lower number of SLA violations when allocating fewer resources.Simulation experiment results show that compared with NAF algorithm,DQN algorithm,and TD3 algorithm,the proposed method can reduce SLA violations by up to 80%and resource allocation by 9%.
作者
严嘉辉
钟玮轩
董黎刚
蒋献
王广昌
陆凌蓉
YAN Jiahui;ZHONG Weixuan;DONG Ligang;JIANG Xian;WANG Guangchang;LU Lingrong(Zhejiang Gongshang University,Hangzhou 310018,China;UT Starcom Telecom Co.,Ltd.,Hangzhou 310051,China)
出处
《电信科学》
北大核心
2024年第10期61-77,共17页
Telecommunications Science
基金
国家自然科学基金资助项目(No.62301488)
浙江省重点研发计划项目(No.2021C01036)
浙江省高等教育学会高等教育研究重点立项课题项目(No.KT2022017)
浙江省新型网络标准与应用技术重点实验室项目(No.2013E10012)。
关键词
网络切片
资源分配
强化学习
在线支持向量机算法
network slicing
resource allocation
reinforcement learning
online SVM algorithm