期刊文献+

基于神经网络的铂电阻温度传感器非线性校正方法 被引量:43

Approaches to Non-linearity Compensation of Platinum Resistor Based on Neu-ral Network in Temperature Measurement
下载PDF
导出
摘要 简单介绍了当前铂热电阻应用存在的问题,提出了应用前向多层神经网络建立热电阻的逆模型进行非线性补偿,使得铂电阻的静态特性线性化。文中采用MATLAB为工具,对神经网络进行训练,获得权值、阈值,并以SIEMENS的S7-200为控制器,对加热炉进行控制。设计及实际应用表明,这种方法简单、实用、有效,大大方便了铂电阻温度传感器在测控系统中的应用。 The problem of using platinum resistor is introduced. Here bring forward one way, to compensate non-linearity using adverse model of platinum resistor founded by forward multilayer neural network. Which makes static characteristic of platinum resistor linearity. The paper trains the neural network using MATLAB, gets the weights and biases, controls the heater by S7-200 PLC of SIEMENS. It has been shown in practical applications that the methods proposed in the paper not only are correct, practical and precise, but also make it convenient for platinum resistor to be applied on measurement and control systems.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2002年第5期518-521,共4页 Chinese Journal of Scientific Instrument
基金 工业控制技术国家重点实验室开放课题基金 与福州大学科学技术发展基金资助项目。
关键词 神经网络 铂电阻 温度传感器 非线性校正 Neural network Non-linearity compensation MATLAB Temperature sensor
  • 相关文献

参考文献6

二级参考文献5

共引文献35

同被引文献260

引证文献43

二级引证文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部