期刊文献+

观测时滞离散系统卡尔曼滤波算法 被引量:2

Kalman Filtering Algorithm for Observing Time-delay Discrete Systems
下载PDF
导出
摘要 由于观测时滞系统的观测方程不符合卡尔曼滤波算法的实现形式,导致传统卡尔曼滤波算法无法直接应用于观测时滞离散系统。为此,在借鉴系统状态增广方法的基础上,设计了一种将观测方程转换为无时滞观测方程的方法。同时根据卡尔曼滤波算法原理,针对变换后的无时滞系统模型方程,给出观测时滞卡尔曼滤波算法的步骤,并将此方法应用到实际非线性观测光电跟踪系统中,进行算法的性能对比。仿真实验结果证明:将时滞观测方程转换为无时滞观测方程的方法是可行的,可大幅度提高算法精度。 The observation equation of the observing time-delay system doesn't conform to the realization form of Kalman filtering algorithm,this results in Kalman filtering algorithm's incapability of being directly applied to observing the traditional time-delay discrete system. Basing on the method of augmented state,the way to convert observation equation to an equation without time delay was proposed. According to the principle of Kalman filtering algorithm and aiming at the model equation of non-delay system transformed,the steps of observing time-delay Kalman filtering algorithm were presented and applied to the nonlinear observation of electro-optical tracking system. Comparing and simulating the algorithms' performance show that converting the time-delay observation equation to the one without time-delay is feasible and it can greatly improve the algorithm accuracy.
出处 《化工自动化及仪表》 CAS 2015年第10期1099-1103 1108,共6页 Control and Instruments in Chemical Industry
关键词 卡尔曼滤波算法 非线性观测光电跟踪系统 非线性滤波 增广状态 状态估计 Kalman filtering algorithm,nonlinear observation of electro-optical tracking system,nonlinear filtering,augmented state,state estimation
  • 相关文献

参考文献2

二级参考文献24

  • 1MENDEL J M. White-noise estimators for seismic data processing in oil exploration[ J]. IEEE Transactions on Automatic Control, 1977, 22(5) :694-706.
  • 2CHEN B S, LIN C W. Optimal deconvolution filter design under parameters perturbation in transmission channels[J]. Circuits, Systems, and Signal Processing, 1996, 15(2) :213-231.
  • 3ZHOU H, XIE L H, ZHANG C S. A direct approach to h2 optimal deconvolution of periodic digital channels[J]. IEEE Transactions on Signal Processing, 2002, 50(7) : 1685-1698.
  • 4FRIDMAN E, SHAKED U. A new H∞ design linear time-delay system[J] . IEEE Transactions on Signal Processing, 2001, 49(11): 2839-2843.
  • 5KWAKERNAAK H. Optimal filtering in linear systems with time delays[J]. IEEE Transactions on Automatic Control, 1967, 12(2) : 169-173.
  • 6ZHANG H S, XIE L H, ZHANG D, et al. A reorganized innovation approach to linear estimation[J]. IEEE Transaction on Automatic Control, 2004, 49(10) :1810-1814.
  • 7AHLEN A, STERNAD M. Optimal deconvolution based on polynomial method[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(2) :217-226.
  • 8SILVIA M T, ROBINSON E A. Deconvolution of geophysical time series in the exploration for oil and natural gas [ M ]. New York: Elsevier, 1979.
  • 9DENG Z L, ZHANG H S, LIU S J, et al. Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems[J]. Automatica, 1996, 32(2):199-216
  • 10DENG Z L. Time-domain approaches to muhichannel optimal deconvolution[ J ]. International Journal of Systems Science, 2000, 31 (6) : 787-796.

共引文献5

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部