期刊文献+

低浓度三分子模型差速流动引起的化学不稳定性 被引量:2

Differential Flow-Induced Chemical Instability in Low-Concentration Brusselator
下载PDF
导出
摘要 建立了低浓度三分子反应模型反应 流动 扩散方程 ,理论分析了出现差速流动化学不稳定的条件 ,得到了临界流动速率c 和扰动波包的群速度vg,讨论了扰动增长率与流速的关系 ,并理论研究了出现不稳定时系统的时、空结构 .研究结果表明 ,化学反应在低浓度条件下也可能出现差速流动引起的化学不稳定 . The reaction-flow-diffusion equation for low-concentration Brusselator is developed and the existence condition for differential flow-induced chemical instability for the model is theoretically analyzed by means of linear stability analysis and the method of steepest descent. The neutral value phi(c) of flow rate phi of autocatalytic y and the group velocity v(g) of perturbation wave packet are derived. The relations of flow rate phi to the perturbation growth rate Relambda is discussed. The temporal structure at different time tau (fixed phi) and spatial structure with different phi (fixed tau) of the system while instability exhibits (phi > phi(c)) is numerically studied, respectively. It is shown that the differential flow-induced chemical instability may exhibit and the perturbations propagate along the reactor in terms of periodic wave packet. It is proved that under the condition of low concentration for chemical reactions, the differential flow-induced chemical instability may also exhibit.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2002年第6期443-446,共4页 化学物理学报(英文)
关键词 化学不稳定性 低浓度三分子模型 反应-流动-扩散方程 差速流动 最陡下降法 化学反应 low-concentration Brusselator reaction-flow-diffusion equation differential flow-induced instability
  • 相关文献

参考文献5

  • 1Rovinsky A B, et al. Phys. Rev. Latt. , 1992, 69 : 1193.
  • 2Rovinsky A B, et al. Phys. Rev. Latt. , 1993, 70. 778.
  • 3ZhangDi(张棣) ChenZhirong(陈汉融).科学通报,1982,27:1281-1281.
  • 4GongYubing(龚玉兵).化学物理学报,1996,9:297-297.
  • 5Deissler R J. J. Stat. Phys. , 1985, 40:371.

同被引文献34

  • 1管明荣.化学反应中的非线性现象[J].山东轻工业学院学报(自然科学版),1996,10(4):14-17. 被引量:1
  • 2Razvan Satnoianu, John Merkin, Stephen Scott. Interaction between Hopf and convective instabilities in a flow reactor with cubic autocatalator kinetics [J]. Phys Rev E, 1998, 57:3246-3250.
  • 3Peter Andresen, Morten Bache, Erik Mosekilde. Stationary space-periodic structures with equal diffusion coefficients [ J]. Phys Rev E, 1999, (60) :297 -301.
  • 4Mads Kaern, Michael Menzinger. Flow-distrlbuted oscillations: Stationary chemical waves in a reacting flow [ J ]. Phys Rev E, 1999, (60) : 3471 - 3474.
  • 5Prigogine I, Lefever R. Symmetry breaking instabilities in dissipative systems. II [ J ]. J Chem Phys, 1968, (48) :1695 -1698.
  • 6Prigogine I. Structure, dissipation and life, in from theoretical physics to Biology [ M]. Marois: Amsterdam, North-Holland, 1969; 23 - 52.
  • 7Glansdorff P, Prigogine I. Thermodynamic theroy of structure, stability and fluctuations [ M ]. Wiley : New York, 1971. 293 - 298.
  • 8Tyson J. Some further studies of nonlinear oscillations in chemical systems [ J]. J Chem Phys, 1973, (58) :3919 -3930.
  • 9Auchmuty J F G, Nieolis G. Bifurcation analysis of nonlinear reaction-diffusion equations-I. Evolution equations and the steady state solutions [J]. Bull Math Biol, 1975, (37) : 323 -365.
  • 10Herschkowitz-Kaufman M. Bifurcation analysis of nonlinear reaction-diffusion equations-II. Steady state solutions and comparison with numerical simulations [ J]. Bull Math Biol, 1975, (37) :589 -636.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部