期刊文献+

改进的粒子群优化算法优化分数阶PID控制器参数 被引量:24

Optimization of fractional PID controller parameters based on improved PSO algorithm
下载PDF
导出
摘要 为了提高分数阶比例积分微分(FOPID)控制器的控制效果,针对FOPID控制器参数整定的范围广、复杂性高等特点,提出改进的粒子群优化(PSO)算法优化FOPID控制器参数的方法。该算法对PSO中惯权重系数的上下限设定范围并随迭代次数以伽玛函数方式非线性下降,同时粒子的惯性权重系数和学习因子根据粒子的适应度值大小动态调整,使粒子保持合理运动惯性和学习能力,提高粒子的自适应能力。仿真实验表明,改进的PSO算法优化FOPID控制器的参数较标准PSO算法具有收敛速度快和收敛精度高等优点,使FOPID控制器得到较优的综合性能。 Aiming at poor control effect of Fractional Order Proportional-Integral-Derivative(FOPID)controller and the characteristics of wide range and high complexity of parameter tuning for FOPID controller,an improved Particle Swarm Optimization(PSO)method was proposed to optimize the parameters of FOPID controller.In the proposed algorithm,the upper and lower limits of inertial weight coefficients in PSO were defined and decreased nonlinearly with the iteration times in form of Gamma function,meanwhile,the inertia weight coefficients and learning factors of particles were dynamically adjusted according to the fitness value of particles,making the particles keep reasonable motion inertia and learning ability,and improving self-adaptive ability of the particles.Simulation experiments show that the improved PSO algorithm has faster convergence rate and higher convergence accuracy than the standard PSO algorithm in optimizing the parameters of FOPID controller,which makes the FOPID controller obtain better comprehensive performance.
作者 金滔 董秀成 李亦宁 任磊 范佩佩 JIN Tao;DONG Xiucheng;LI Yining;REN Lei;FAN Peipei(Signal and Information Processing Key Laboratory,Xihua University,Chengdu Sichuan 610039,China)
出处 《计算机应用》 CSCD 北大核心 2019年第3期796-801,共6页 journal of Computer Applications
基金 四川省科技厅重点项目(2018JY0463) 四川省高校科研创新团队项目(18TD0024) 四威高科-西华大学产学研联合实验室(2016-YF04-00044-JH) 西华大学研究生创新基金资助项目(ycjj2018073)~~
关键词 分数阶比例积分微分控制器 粒子群优化 惯性权重系数 参数优化 自适应 Fractional Order PID(FOPID)controller Particle Swarm Optimization(PSO) inertial weight coefficient parameter optimization self-adaption
  • 相关文献

参考文献7

二级参考文献54

  • 1李创,王景成.基于改进差分进化的分数阶PI~λD~μ参数整定[J].控制工程,2010,17(4):504-508. 被引量:4
  • 2汤可宗,肖绚,贾建华,徐星.基于离散式多样性评价策略的自适应粒子群优化算法[J].南京理工大学学报,2013,37(3):344-349. 被引量:12
  • 3李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 4延丽平,曾建潮.具有自适应随机惯性权重的PSO算法[J].计算机工程与设计,2006,27(24):4677-4679. 被引量:13
  • 5KENNEDY J, EBERHART R. Particle swarm optimization [ C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995,4: 1942-1948.
  • 6KENNEDY J. Stereotyping: improving particle swarm performance with cluster analysis [ C]//Proceedings of the 2000 Congress on Ev- olutionary Computation. Piscataway: IEEE, 2000, 2:1507 - 1512.
  • 7LIU B, WANG L, JIN Y-H, et al. Improved particle swarm optimi- zation combined with chaos [ J]. Chaos, Solitons and Fractals, 2005, 25(5) : 1261 - 1267.
  • 8SHI Y, EBERHART R C. Fuzzy adaptive particle swarm optimiza- tion [ C] // Proceedings of the 2001 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2001:101-106.
  • 9SHI Y, EBER/-IART R C. A modified particle swarm optimizer [C]// IEEE World Congress on Computational Intelligence: The 1998 IEEE International Conference on Evolutionary Computation Proceedings. Pis- cataway: IEEE, 1998:69-73.
  • 10CHATFERJEE A, SIARRY P. Nonlinear inertia variation for dynam- ic adaption in particle swarm optimization [ J]. Computers & Opera- tion Research, 2006, 33(3): 859-971.

共引文献148

同被引文献204

引证文献24

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部