摘要
本文研究了具有有限升标(降标)的半Fredholm算子,证明了具有有限升标(降标)的上半Fredholm算子在其摄动类中交换元的摄动下仍具有同样性质,对于下半Fredholm算子有同样结论.从而改进了[1,2]中的主要结果.同时,我们证明了被摄动算子集合扩大(相对于[1]而言)而摄动仍为紧摄动时较[1]中更强的结果.
In this paper, we prove that the collection of upper semi-Fredholm operators with finite ascent (descent) is closed under commuting operator perturbation class associated with it, and the same thing hold for lower semi-Fredholm operators. As a corrollary, we get the results of [1,2]. At the same time, we also discussed the case when the set being perturbateed are extended, while the compact perturbation is kept.
出处
《数学进展》
CSCD
北大核心
2003年第2期190-194,共5页
Advances in Mathematics(China)
基金
国家自然科学基金(No.69735020
19571047)和973项目资助.