期刊文献+

BOCHNER TECHNIQUE IN REAL FINSLER MANIFOLDS 被引量:1

BOCHNER TECHNIQUE IN REAL FINSLER MANIFOLDS
下载PDF
导出
摘要 Using non-linear connection of Finsler manifold M, the existence of local coordinates which is normalized at a point x is proved, and the Laplace operator A on 1-form of M is defined by non-linear connection and its curvature tensor. After proving the maximum principle theorem of Hopf-Bochner on M, the Bochner type vanishing theorem of Killing vectors and harmonic 1-form are obtained. Using non-linear connection of Finsler manifold M, the existence of local coordinates which is normalized at a point x is proved, and the Laplace operator A on 1-form of M is defined by non-linear connection and its curvature tensor. After proving the maximum principle theorem of Hopf-Bochner on M, the Bochner type vanishing theorem of Killing vectors and harmonic 1-form are obtained.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2003年第2期165-177,共13页 数学物理学报(B辑英文版)
基金 Project supported by the Natural Science Foundation of China(10271097)
关键词 Finsler manifold Laplace operator killing vector field harmonic 1-form Bochner type vanishing theorem Finsler manifold, Laplace operator, killing vector field, harmonic 1-form, Bochner type vanishing theorem
  • 相关文献

参考文献12

  • 1Bochner S. Vector fields and Ricci curvature. Bull Amer Math Soc, 1946, 52:776-797
  • 2Bochner S. Curvature in Hermitian metric. Bull Amer Math Soc, 1947,53:179-195
  • 3Yano K, Bochner S. Curvature and Betti Number. Princeton Univ Press, 1953
  • 4Wu H. Bochner technique in differential geometry. In: Proceedings of the 1980 Beijing symposium on Differential Geometry and Differential Equations. Advances in Mathematics(China), 1981, 10(1): 57-76. 1982, 11(1):19-61
  • 5Bao D, Chern S S, Shen Z, eds. Finsler geometry (Proceedings of the Joint Summer Research Conference on Finsler Geometry, July 16-20, 1995, Seattle, Washington). Cont Math, Vol. 196. Amer Math Soc,Providence, RI, 1996
  • 6Bao D, Chern S S, Shen Z. An introduction to Riemann-Finsler geometry. New York: Springer-Verlag, Inc, 2000
  • 7Chern S S. Finsler geometry is just Riemannian geometry without the quadratic restriction. AMS Notices, 1996, 43(9): 959-963
  • 8Abate M, Patrizio G. Finsler metric-A global approach. In: Lecture Notes in Math, Vol. 1591. Berlin, Heidelberg: Springer-Verlag, 1994
  • 9Chern S S, Chern Weihuan. Lecture on Differential Geometry. Beijing: Beijing University Press, 1983
  • 10de Rham G. Variétés Differentiables. Paris: Hermann, 1955

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部