期刊文献+

姿态特征与深度特征在图像动作识别中的混合应用 被引量:21

Hybrid of Pose Feature and Depth Feature for Action Recognition in Static Image
下载PDF
导出
摘要 人体姿态是动作识别的重要语义线索,而CNN能够从图像中提取有很强判别能力的深度特征,本文从图像局部区域提取姿态特征,从整体图像中提取深度特征,探索两者在动作识别中的互补作用.首先介绍了一种姿态表示方法,每个肢体部件的姿态由描述该部件姿态的一组Poselet检测得分表示.为了抑制检测错误,设计了基于部件的模型作为检测上下文.为了从数量有限的数据集中训练CNN网络,本文使用了预训练和精细调节的方法.在两个数据集中的实验表明,本文介绍的姿态特征与深度特征混合使用,动作识别性能得到了极大提升. Body pose is an important semantic cue for action recognition, and CNN can extract strong discriminative depth feature. This paper extracts pose feature from local image patches and gets depth feature from holistic image, then exploits their complementary relationship in action recognition. A pose representation is introduced, in which pose of a body part is represented by a collection of poselets which describe its pose variability. To suppress detection ambiguity,part-based model is designed as the context of detection for each poselet. CNN is trained through pre-training and fine tuning on the data set with very limited images. Empirical results demonstrate aggressive performance improvement by concatenating pose feature and depth feature.
作者 钱银中 沈一帆 QIAN Yin-Zhong;SHEN Yi-Fan(School of Software,Changzhou College of Information Technology,Changzhou 213164;School of Computer Science,Fudan University,Shanghai 200433;Shanghai Key Laboratory of Intelligent Information Processing,Fudan University,Shanghai 200433)
出处 《自动化学报》 EI CSCD 北大核心 2019年第3期626-636,共11页 Acta Automatica Sinica
基金 江苏高校品牌专业建设工程资助项目(PPZY2015A090) 常州信息职业技术学院自然科学项目(CXZK201803Z)资助~~
关键词 动作识别 姿态特征 poselet 深度特征 Action recognition pose feature poselet depth feature
  • 相关文献

参考文献2

二级参考文献51

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献133

同被引文献148

引证文献21

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部