期刊文献+

一种基于密度分布函数聚类的属性离散化方法 被引量:12

A New Method Based on Density Clustering for Discretization of Continuous Attributes
下载PDF
导出
摘要 连续属性离散化是数据分析预处理中的一项重要内容,针对有监督学习,提出了一种基于密度分布函数聚类的连续属性离散化方法。该方法利用了粗糙集中决策表的一致性水平的概念,通过计算基于聚类划分后决策表一致性水平的反馈信息,动态地调整聚类参数影响因子,直到决策表的一致性水平达到原始水平为止。由于同时考虑所有属性的离散化效果,可使离散化的结果更为合理。为了验证该方法的可行性,文中利用实际数据进行了试验。 Discretization of continuous attributes is one of the important steps in preprocessing of data analysis. In this paper, a new method of supervised discretization of continuous attributes based on clustering is introduced. This method makes use of the concept of the level of consistency of decision table in Rough Sets. By computing the level of consistency of the produced decision table, the coefficient of clustering, influence factor, is adjusted dynamically. And this procedure couldn抰 stop until the level of consistency of the decision table reaches its original level. Because the discretization of all continuous attributes is done simultaneously, the result should be reasonable. Experiments show that this method is feasible.
出处 《系统仿真学报》 CAS CSCD 2003年第6期804-806,813,共4页 Journal of System Simulation
基金 国家自然科学基金(69975024)
关键词 离散化 聚类 一致性水平 密度分布函数 discretization clustering level of consistency
  • 相关文献

参考文献9

  • 1苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139
  • 2Nguyen S H, Skowron A. Quantization of Real Value Attributes---Rough Set and Boolean Reasoning Approach [A]. Proc of the Second Joint Conference on Information Sciences [C]. 1995.
  • 3Holte R C. Very Simple Classification Rules Performs Well on Most Commonly Used Datasets[J].Machine Learing,1993,1
  • 4Kerber R. Discretization of Numeric Attributes[A]. The 9^th International Conference on Artificial Intelligence[C]. 1992.
  • 5Fayyad U M, Irani K B. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning [A]. 13^th IJCAI[C]. 1993.
  • 6Nguyen S H. Discretization of Real Value Attributes: A boolean reasoning approach [D]. Warsaw: Warsaw University, 1997.
  • 7Michal R Chmielewski, Jerzy W Grzymala-Bussse. Global Discretization of Continuous Attributes as Preprocessing for Machine Learning [J].International Journal of Approximate Reasoning, 1996, 15.
  • 8Quinlan, J R.C4.5 Programs for Machine learning[D]. America:Morgan-Kaufmann 1993.
  • 9A Hinneburg, D A Keim, An efficient Approach to Clustering in Large Multimedia Databases with Noise [A]. In Proc. 1998 Int. Conf.Knowledge Discovery and Data Mining [C]. 1998.

二级参考文献4

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 2Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页
  • 3苗夺谦,博士论文,1997年
  • 4Hu X H,Int J Computational Intelligence,1995年,11卷,2期,323页

共引文献138

同被引文献102

引证文献12

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部