期刊文献+

联营电力市场的博弈分析:单时段情形 被引量:41

AUCTION GAMES IN POOL-BASED ELECTRICITY MARKETS: SINGLE-PERIOD CASE
下载PDF
导出
摘要 该文介绍一种用于分析联营电力市场(Pool-based electricity market)中竞标行为的博弈模型。此文考虑单时段情形因而所建立的模型适合于实时市场,研究的对象是在纯策略意义下的Nash均衡点。首先,运用多值函数的不动点定理建立了一个均衡点的存在性引理。随后刻划了在发电容量相对紧张情况下的均衡点。然后,给出了在某种市场条件下博弈均衡点不存在的例子。为了提高博弈模型的预测能力,文中定义了一种较弱形式的均衡点概念即准均衡点。该文刻划了在发电容量相对充裕情况下的均衡点。文中所建立的模型可以用来进一步说明作者以前提出的一种市场力指标。 The single-period auction game model for analyzing strategic behavior in pool-based electricity markets is presented. The focus of the study is the Nash equilibrium in pure strategy sense. The equilibrium existence under a rather restrictive condition is proved. The characterization of equilibriums under tight capacity constraints is provided. It is demonstrated that the auction game does not possess a pure strategy Nash equilibrium under a wide range of market conditions. to enhance the prediction power of the auction game model equilibrium, the quasi-equilibrium, is introduced. A weaker form of the characterization of the quasi-equilibrium under weak capacity constraints is provided.
出处 《中国电机工程学报》 EI CSCD 北大核心 2003年第6期71-76,86,共7页 Proceedings of the CSEE
关键词 电力系统 博弈分析 联营电力市场 单时段情形 电力供应商 电力行业 Power system Electricity market Game theory Optimization
  • 引文网络
  • 相关文献

参考文献23

  • 1Singh H, Hao S, Papalexopoulos A. Transmission congestion management in competitive electricity markets[J]. IEEE Trans. On Power Systems, 1998, 13(2): 672-680.
  • 2Wu F F, Varaiya P. Coordinated multilateral trades for electric power networks: theory and implementation[J]. International Journal of Electric Power and Energy Systems, 1999, 21(2): 75-102.
  • 3Gan D, Chen Q. Locational marginal pricing: new england prospective presentation summary for panel session flow-gate and location based pricing approaches and their impacts[C]. Columbus of Ohio,Proceedings of IEEE PES Winter Meeting, 2001.
  • 4王锡凡.分段竞价的电力市场[J].中国电机工程学报,2001,21(12):1-6. 被引量:87
  • 5Ethier R, Zimmerman R, Mount T, et al. A uniform price auction with locational price adjustments for competitive electricity markets[J]. International Journal of Electrical Power & Energy Systems,1999, 21(2): 103-110.
  • 6Richter C W, Sheble G. Genetic algorithm evolution of utility bidding strategies for the competitive marketplace[J]. IEEE Trans. On Power Systems, 1998, 13(1): 256-261.
  • 7Zimmerman R, Thomas R, Gau D. et al. A web-besed platform for experimental investigation of electric power auctions[J]. Decision Support Systems, 1999, 24(3-4): 193-205.
  • 8Bai X, Shahidehpour S M, Ramesh V C, et al. Transmission analysis by nash game method[J]. IEEE Trans. On Power Systems, 1997,12(3): 1046-1052.
  • 9Guan X, Ho Y-C, Pepyne D L. Gaming and price spikes in electric power markets[J]. IEEE Trans. On Power Systems, 2001, 16(3):402-408.
  • 10Bialek J W. Gaming the uniform-price spot market-quantitative analysis[Z]. Submitted to IEEE Trans. On Power Systems, April 26,2001.

二级参考文献2

  • 1David A K,Proc IEEE Power Engineering Society 2000 Sunmer Meeting,2000年,4卷,2168页
  • 2Wang Xifan,Modern power system planning,1994年

共引文献86

同被引文献467

引证文献41

二级引证文献704

;
使用帮助 返回顶部