期刊文献+

决策表的属性重要性与离散化 被引量:6

Importance of Multi-Valued Attributes and Discretization in Decision Tables
原文传递
导出
摘要 运用 Rough集理论处理决策表时 ,要求决策表中的值用离散数据表达。文中形式化描述了离散化问题 ,研究了决策表的属性重要性 ,提出计算条件属性重要性的新方法 ,然后给出基于属性重要性的决策表离散化算法。该算法按照属性重要性从小到大的顺序对每个属性进行离散化 :从可辨别矩阵中得到冲突样本 ,将冲突样本的属性值作为断点的上下界 ,用所有这样的断点化简后得到的断点集对该属性进行离散化处理。 In this paper, the discretization in decision tables is first summarized. By analyzing the importance of attributes in decision tables, a new method is put forward to compute it. Based on the attributes' importance, an algorithm is proposed to discretize multi valued attributes in decision tables. According to the discernibility matrix, the value region of a break point can be obtained, and discretization can be started with these break points.
作者 王东锴 梁樑
出处 《系统工程理论方法应用》 2003年第2期141-145,共5页 Systems Engineering Theory·Methodology·Applications
关键词 ROUGH集 决策表 离散化 属性重要性 离散数据 decision table discretization Rough set
  • 相关文献

参考文献4

  • 1Komorowski O J. ROSETTA-A rough set toolkit for analysis of data[A]. Fifth International Workshop on Rough Sets and Soft Computing[C]. 1997. 403-407.
  • 2Nguyen H S, Nguyen S H, Skowron A. Searching for features definded by hyperplanes[A]. 9th International Symposium on Foundations of Intelligent Systems[C]. 1996. 366-375.
  • 3Nguyen H S, Skowron A. Quantization of real value attributes-rough set and boolean reasoning approach[A]. Proceedings of the Second Joint Conference on Information Sciences[C]. 1995. 34-37.
  • 4Nguyen H S, Nguyen S H. Discretization methods for data mining[A]. In: Polkowski L, Skowron A, eds.Rough Sets in Knowledge Discovery[C]. Heidelberg:Physica-Verlag, 1998. 451-482.

同被引文献43

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部