期刊文献+

无碳化物贝氏体/马氏体复相钢的强韧性 被引量:25

STRENGTH AND TOUGHNESS OF A CARBIDE FREE BAINITE-MARTENSITE STEEL
下载PDF
导出
摘要 探讨了回火温度对低碳Mn-Si-Cr钢的空冷无碳化物贝氏体/马氏体复相组织及水淬马氏体组织强韧性的影响。试验表明:经中温回火的空冷无碳化物贝氏体/马氏体复相组织具有较高的强韧性,且中温回火的无碳化物贝氏体/马氏体复相组织的J积分断裂韧度需用J_(1C)来表征。经360℃火后,空冷无碳化物贝氏体/马氏体复相组织的强韧性为σ_(0.2)=1355 MPa,σ_b=1600 MPa,δ_5=13.5%,φ=56.2%,A_K=81 J,相同钢的水淬马氏体组织的强韧性为σ_(0.2)=1350 MPa,σ_b=1617 MPa,δ_5=14.1%,φ=59.5,A_K=67.5 J。其原因在于中温形成的无碳化物贝氏体具有较高的回火抗力,而无碳化物贝氏体中的热稳定性较高的富碳膜状残余奥氏体使钢呈现较高的韧性。 Effect of tempering temperature on the combination of strength and toughness of air cooled carbide free bainite-martensite (CFB/M) microstructure and water quenched martensite (M) microstructure for a low carbon Mn-Si-Cr steel is experimentally investigated. The results show that CFB/M microstructure compared with M microstructure has a better combination of strength and toughness after intermediate temperature tempering. The fracture toughness of the steel with CFB/M microstructure should be characterized by J1c while that of the steel with M could be characterized by K1c after tempering. After tempering at 360 ℃ ,the combination of strength and toughness of the steel with CFB/M microstructure is σ0.2 = 1355 MPa, σ=1600 MPa, δ=13.5 %, φ=56.2 %, Ak=81 J, while that of the same steel with M microstructure is σ0.2=1350 MPa, σb=1617MPa, δ5=14.1%, φ=59.5, AK=67.5 J. The cause might be that CFB has a higher temper resistance than M. And carbon enriched retained austenite film in CFB with a good thermal stability might improve the toughness of the steel after tempering at intermediate temperature.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2003年第8期27-31,共5页 Journal of Mechanical Engineering
基金 国家重点基础研究发展规划基金(G1998061513)
关键词 无碳化物贝氏体/马氏体复相钢 强韧性 断裂韧度 低合金超高强度钢 中温回火 热稳定性 Carbide free bainite-martensite steel Strength and toughness Fracture toughness
  • 相关文献

参考文献22

  • 1杨柳,方鸿生,孟至和.Fe-C-Mn-B合金奥氏体等温分解动力学及Mn的再分配[J].金属学报,1992,28(1). 被引量:26
  • 2刘东雨,方鸿生,陈颜堂,白秉哲,张文征,徐平光.1500MPa级经济型贝氏体/马氏体复相钢的合金设计[J].金属热处理,2000,25(10):1-5. 被引量:26
  • 3Lee Wonpyo. Development of high performance struetual steels for 21st century in Korea. National Research Institute for Metals of Japan. In: Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century, Tsukuba, Japan, 2000:330--63.
  • 4Allten A G, Payson P. The effect of silicon on the tempering of martensitc. Transactions of the ASM, 1953, 45z498-532.
  • 5Shih C H, Averbach B L, Cohen M. Some effect of silicon on the mechanical properties of high strength steels. Transactions of the ASM. 1956, 48: 86-118
  • 6Nam W J, Choi H C. Effects of silicon, nickel, and vanadium on impact toughness in spring steels. Mater.Sci. & Tech., 1997, 13(7): 565-574.
  • 7Thomas G. Retained austenite and tempered martensite embrittlement. Metall. Trans., 1978, 9A(3): 439--450.
  • 8Narasimha R B V, Thomas G. Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness. Metall. Trans., 1980, 11A(3):441-457.
  • 9Horn R M, Ritchie R O. Mcchanisrns of tempered martensite embrittlement in low alloy Steels, Metall. Trans., 1978,9A(8):1039-1053.
  • 10Bhadeshia H K D H, Edmonds D V. Temered martensite embrittlement:Role of retained austenite and cementite,Met. Sci., 1979, 13(6): 325-334.

二级参考文献6

共引文献50

同被引文献231

引证文献25

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部