摘要
以我国某铁路站点作为研究对象,选取为期435天的某铁路局全部列车旅客乘车数据进行分析建模.在建立模型时首先将数据分为节假日与非节假日两种类型.对于非节假日数据选用包含周期性的SARIMA模型,对于节假日数据选用波动系数模型,通过两种模型组合对铁路站点客流量进行预测,得到了较好的预测效果.运用方法所得到的短期内铁路客流量变化的准确预测,能够为铁路部门合理安排调度、充分利用人力物力提供参考,有效避免了资源的浪费或因准备不足而造成的车站拥挤混乱.
In this paper,a railway station of China is chosen as the research object.The data of all passengers of a railway administration is used to build models and forecast.Before building the model,the data are divided into two types:non-holidays and holidays.SARIMA model is used to predict non-holidays data,and for holiday’s data,fluctuation coefficient model is used to predict.The accurate forecasting of the change of the railway traffic in the short term can provide a reference for the railway department to arrange the scheduling and make full use of the manpower and material resources,thus effectively avoiding the waste of resources or the chaos caused by the lack of preparation.
作者
段然
庞建华
张良钧
DUAN Ruan;PANG Jian-hua;ZHANG Liang-jun(School of Science,Guangxi University of Science and Technology,Liazhou 545006, China;Guangzhou Teddy Intelligent Technology Co Ltd, Guangzhou 510663, China)
出处
《数学的实践与认识》
北大核心
2019年第9期1-10,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金(11401117)
广西自然科学基金(2018JJB110036)
广西研究生教育创新计划项目(JGY2017101)
关键词
铁路客流量
SARIMA模型
波动系数模型
railway traffic flow volume
SARIMA model
fluctuation coefficient model