期刊文献+

分形介质分数阶反常守恒扩散模型及其解析解 被引量:1

Fractional anomalous conservation diffusion model and its analytic solution in fractal media
下载PDF
导出
摘要 建立了分形介质中分数阶瞬时点源反常守恒扩散模型 .并利用分数阶微积分理论和Fox函数理论给出了解析解 ,同时给出了散射函数谱的表达式 .结果表明 ,散射函数谱仍具有尺度函数的特性 ,经典的瞬时点源扩散问题可作为特例 ,所得解析解可作为基本解进行叠加 . The model of fractional anomalous diffusion caused by an instantaneous point source in fractal media is established. Using the theories of fraction calculus and H-function, the analytical solutions of concentration distribution are given. At the same time we derive the expressions of scattering function spectrum. The result shows that the scattering function spectra still have the properties of scaling function, classical diffusion problems caused by instantaneous point source can be regarded as particular cases of this paper.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2003年第5期29-32,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目 ( 10 2 72 0 67) 教育部博士点基金资助项目
关键词 反常扩散 分数阶微积分 Fox函数 散射函数 anomalous diffusion fractional calculus H-function scattering function
  • 相关文献

参考文献1

二级参考文献13

  • 1Nonnemacher T F, Metzler R. On theRiemann_Liouville fractional calculus and some recent applications. Fractals, 1995, 3(3):557~566
  • 2Mainardi F. Fractional calculus: some basic problems in continuum and statisticalmechanics. In: Cappinteri A, Mainardi F, eds. Fractals and Fractional Calculus inContinuum Mechanics. New York: Springer Wien, 1997. 291~348
  • 3Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamicproblems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev, 1997,50(1): 15~67
  • 4Westerlund S. Causality, Report No. 940426, University of Kalmar, 1994 4 PodlubnyI. Fractional Differential Equations. San Diego: Academic Press, 1999. 86~231
  • 5Henry B I, Wearne S L. Fractional reaction_diffusion. Physica A, 2000, 276(3): 448-455
  • 6Wyss W. The fractional diffusion equation. J Math Phys, 1986, 27(11): 2782-2785
  • 7Yih C S. Fluid Mechanics: A Concise Introduction to the Theory. New York:MeGraw_Hill, Inc, 1969. 321~324
  • 8Bagley R L, Torvik P J. On the appearance of the fractional derivative in thebehavior of real materials. J Appl Mech, 1984, 51(2): 294~298
  • 9Mathai A M, Saxena R K. The H_function with Applications in Statistics and OtherDisciplines. New Delhi, Bangalore, Bombay: Wiley Eastern Limited, 1978. 1~12
  • 10Gorenflo R, Luchko Y, Mainardi F. Wright function as scale_invariant solutions ofthe diffusion_wave equation. J Comput Appl Math, 2000, 118(1): 175~191

共引文献18

同被引文献10

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部