摘要
下为Banacb空间.在偏微分方程的研究中,Holder空间是一类十分有用的函数空间。揭示Holder空间的性质无疑具有一定意义。众所周知,C~∞(Ω)在L′(Ω)、C^K(Ω)(K为正整数)稠密。但本工作将指出对C^n(Ω),C~∞(Ω)已不再是它的稠密子空间,更具体地说,将给出C~β(Ω)在C^n(Ω)(0<α<β<1)的闭子空间的特征,并证明它在C^n(Ω)不稠密。
The author shows that closed subspaoe of Cp(Ω) in C(Ω)(0<α<β<1)consists of ail of function in C(Ω) which is retriction of some function f∈Cn0(B) where B is a ball such that 'α-Holder modulus' [f(x+h) -f(z)]/ |k| is continuous function for x, and uniformly continuous with respect to h. Some functions which belong to are found and nandensity of Cp(Ω) in C(Ω) follows immediately.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1992年第4期441-443,共3页
Journal of Xiamen University:Natural Science
基金
厦门大学育苗基金