渐近拟Lipschitz算子的具误差的Ishikawa迭代序列
Ishikawa Iterative Sequence with Errors for Asymptotically Quasi-Lipschitzian Operator
摘要
证明了Banach空间中 ,渐近拟Lipschitz算子T的具误差的Ishikawa迭代序列收敛到T的不动点的一个充要条件 .这里T不一定连续 .
In this paper, we will prove a sufficient and necessary condition for Ishikawa iterative sequences with errors of asymptotically quasi-Lipschitzian operator to converge to fixed points where need not be continuous.
参考文献10
-
1[1]Passty G. B. Construction of Fixed Points for Asymptotically Nonexpansive Mapping[J]. Proc. Amer. Math. Soc., 1982,(84):212-216.
-
2[2]Schu J. Iterative Construction of Fixed Points of Asymptotically Nonexpansive Mappings[ J]. Math. Anal., 1991, (158) :407-413.
-
3[3]Goebel K, Kirk W. A. A Fixed Point Theorem for Asymptotically Nonexpansive Mappings[J]. Proc. Amer. Math. Soc.,1972, (35): 171 - 174.
-
4[4]Goebel K. ,Kirk W. A.A Fixed Point Theorem for Transformations whose Iteration have Uniform Lipschitzian constant[J].Studia Math., 1973 (47): 137 - 140.
-
5[5]Tan K. K. ,Xu H. K.Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration process[J] .Math.Anal. Appl., 1993, (178) :301 - 308.
-
6[6]Ghosh M. K., Debnath L. Convergence of Ishikawa Iterates of Quasi - Nonexpansive Mappings [ J ]. Math. Anal. Appl.,1997, (207) :96 - 103.
-
7[7]Petryshyn W. V., Williamson T. E. Strong and Weak Convergence of the Sequence of Successive Approximation for Quasinonexpansive Mappings[ J ]. Math. Anal. Appl., 1973, (43): 459 - 497.
-
8[8]LIU Qi - hou. Iterative sequences for asymptotically quasi- nonexpansive mappings with error member[J]. Math. Anal. Appl. ,2001, (259): 18 - 24.
-
9王缨.渐近拟非扩张映象的带误差的Ishikawa迭代序列[J].西南师范大学学报(自然科学版),2003,28(1):52-54. 被引量:11
-
10包志清.一致拟Lipschitzian映象的带误差的Ishikawa迭代序列[J].西南师范大学学报(自然科学版),2003,28(3):367-369. 被引量:3
二级参考文献12
-
1[1]Passty G B. Construction of fixed points for asymptotically nonexpansive mapping [J]. Proc Amer Math Soc,1982,84: 212-216.
-
2[2]Schu J,Iterative construction of fixed points of asymptotically nonexpansive mappings [J]. J Math Anal Appl,1991,158: 407-413.
-
3[3]Goebel K,Kirk W A,A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc Amer Math Soc,1972,35: 171-174.
-
4[4]Ghosh M K,Debnath L. Convergence of Ishikawa iterates of quasi-nonexpansive mappings [J]. J Math Anal appl,1997,207: 96-103.
-
5[5]Petryshyn W V,Williamson T E,Strong and weak convergence of the sequence of successive approx-imation for quasi-nonexpansive mappings [J]. J Math Anal Appl,1973,43: 459-497.
-
6[6]Liu Qihou,Iterative sequences for asymptotically quasi-nonexpansive mappings with Error Member [J]. J Math Anal Appl,2001,259: 18-24.
-
7Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mapping [J]. Proc Amer Math Soc, 1972, 35:171 - 174.
-
8Passty G B. Construction of fixed points for asymptotically nonexpansive mapping [J]. Proc Amer Math Soc, 1982, 84: 212-216.
-
9Schu J. Iterative construction of fixed points of asymptotically nonexpansive mappings [J]. J Math Anal Appl, 1991, 158: 407- 413.
-
10Ghosh M K, Debnath L. Convergence of Ishikawa iterates of quasi-nonexpansive mappings [J]. J Math Anal Appl, 1997, 207:96 - 103.
共引文献12
-
1肖建中,朱杏华.关于渐近拟非扩张算子不动点迭代逼近的注记[J].应用数学学报,2004,27(4):608-616. 被引量:11
-
2黄小平,李雪松.一致拟Lipschitzian映象的迭代逼近[J].电子科技大学学报,2006,35(4):564-566. 被引量:1
-
3林银河.函数及函数序列的迭代估计[J].四川师范大学学报(自然科学版),2008,31(1):52-55. 被引量:3
-
4钟小毛,邓磊.广义渐近拟非扩张映射修正隐迭代过程的强收敛(英文)[J].西南大学学报(自然科学版),2009,31(2):20-24. 被引量:6
-
5程支明,钟小毛.一个迭代序列的不动点问题变分不等式问题及平衡问题(英文)[J].西南大学学报(自然科学版),2010,32(2):123-128. 被引量:2
-
6熊志忠,钟小毛.关于三个问题的混合粘性迭代(英文)[J].西南大学学报(自然科学版),2010,32(4):124-129.
-
7林亨成.l_p空间中严格伪压缩Mann迭代过程的弱收敛(英文)[J].西南大学学报(自然科学版),2010,32(8):144-147.
-
8魏刚,杨明歌.非自渐进扰动非扩张映射公共不动点的收敛定理(英文)[J].西南大学学报(自然科学版),2010,32(10):109-113.
-
9杨峰,杨明歌.平衡与不动点问题的强收敛定理(英文)[J].西南大学学报(自然科学版),2010,32(10):114-118.
-
10林亨成.希尔伯特空间中一类新的连续伪压缩映射的广义迭代算法(英文)[J].西南师范大学学报(自然科学版),2012,37(4):46-49.