期刊文献+

金融市场的相关性分析——Copula-GARCH模型及其应用 被引量:159

Dependence Analysis of Finance Markets:Copula-GARCH Model and Its Application
下载PDF
导出
摘要 作为一种全新的分析方法,Copula技术不仅可以有效地捕捉金融时间序列间的相关性,还可用于研究整个金融市场的特性、投资组合的选择及风险分析等其他金融问题。结合t-GARCH模型和Copula函数,建立Copula-GARCH模型并对上海股市各板块指数收益率序列间的条件相关性进行分析。结果表明,不同板块的指数收益率序列具有不同的边缘分布,各序列间有很强的正相关关系,条件相关具有时变性,各序列间相关性的变化趋势极为相似。 As a new methodology that measures dependence, Copula technique can be also used widely in studying the characteristics of financial markets, portfolio aggregation and risk analysis etc. Conditional dependence of index returns series in Shanghai stock market is analyzed using the Copula-GARCH model combined the t-GARCH model with a Copula function. The empirical results show that different index returns series have different marginal distribution. There are strong positive correlations between these series. We found that the conditional dependence between these series is time- varying, and that the variety trend is very likeness.
出处 《系统工程》 CSCD 北大核心 2004年第4期7-12,共6页 Systems Engineering
基金 国家自然科学基金资助项目(70171001)
关键词 金融市场 相关性分析 COPULA-GARCH模型 风险管理 股票市场 Financial Series Dependence Copula-GARCH Shanghai Stock Market
  • 相关文献

参考文献15

  • 1史道济.相关系数与相关性[J].统计科学与实践(天津),2002(4):22-24. 被引量:17
  • 2张尧庭.我们应该选用什么样的相关性指标?[J].统计研究,2002,19(9):41-44. 被引量:95
  • 3Sklar A. Fonctions de repartition àn dimensions et leurs marges[J]. Publication de l′Institut de Statistique de l′Université de Paris,1959,8:229~231.
  • 4Nelsen R B. An introduction to Copulas[M]. New York: Springer, 1998.
  • 5Frees E W, Valdez E A. Understanding relationships using Copulas[J]. North American Actuarial Journal, 1998, 2 (1):1~25.
  • 6Patton A J. Modeling time-varying exchange rate dependence using the conditional Copula[R]. Working paper of London School of Economics & Political Science,2001.
  • 7Bouyé E,Durrleman V,Nikeghbali A. Copulas for finance:a reading guide and some applications[R]. Working Paper of City University Business School, 2000.
  • 8Cossette H, Gaillardetz P, Marceau E. On two dependent individual risk models[J]. Insurance: Mathematics and Economics, 2002,30:153~166.
  • 9张尧庭.连接函数(copula)技术与金融风险分析[J].统计研究,2002,19(4):48-51. 被引量:297
  • 10Patton A J. Estimation of Copula models for time series of possibly different lengths[R]. Working paper of London School of Economics & Political Science,2001.

二级参考文献5

  • 1[1]Nelsen, R. B (1998), An Introduction to Copulas, Lectures Notes in Statistics, 139,Springer Verlag, New York.
  • 2[2]Embrechts, P., Lindskog, F. And McNeil, A. (2001), Modelling Dependence with Copulas and Applications to Risk Management. Dept. of Math. CH-8092, Zürich, Switzerland.
  • 3[3]Bouyé, E. (2000), Copulas for Finance, A Reading Guide and Some Applications. City University Business School,London.
  • 4Nelsen, N. B. [ 1998 ] An Introduction to Copulas, Lectures Notes in Statistics, 139, Spring Verlag, New York.
  • 5张尧庭.连接函数(copula)技术与金融风险分析[J].统计研究,2002,19(4):48-51. 被引量:297

共引文献357

同被引文献1246

引证文献159

二级引证文献786

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部