摘要
为了研究特征p>0的代数闭域K上某种光滑簇χ的D-仿射性质,需要考虑Hi(Z^(2(p-1)ρ))的零化性质,研究相应的G1T-模Z^(2(p-1)ρ)的基座列及其每个基座层的子模结构.为此,给出了G2型单连通单代数群G的G1T-模Z^(2(p-1)ρ)的基座列及其每个基座层的子模结构.
In order to study the D-affine property of a certain smooth variety χ over an algebraically closed filed K of characteristic p>0,we need to consider the vanishing property of Hi(Z^(2(p-1)ρ)).Therefore,we have to study the socle series of the G_1T-module Z^(2(p-1)ρ) and its submodule structure of every socle layer.The socle series of the G_1T-module Z^(2(p-1)ρ) for the algebraic group of type G_2 and its submodule structure of every socle layer are given in this note.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第4期543-547,共5页
Journal of Tongji University:Natural Science
基金
国家自然科学基金资助项目(10271088)
关键词
基座列
子模结构
G2型代数群
socle series
submodule structure
algebraic groups of type G_2