期刊文献+

扩展式机动目标当前统计模型 被引量:5

Extended current statistical model for maneuvering target
下载PDF
导出
摘要  在许多实际情况中,目标测量值通常在极坐标或球坐标中得到,而不是在笛卡尔坐标中得到。此时,目标跟踪实际上是非线性的。在众多的军事与非军事领域,机动目标跟踪都是一个非常重要的问题。机动目标跟踪的困难之处在于目标模型的不确定性。针对非线性机动目标跟踪问题,本文提出了一种扩展式当前统计模型机动目标跟踪算法。该算法不需要假定目标的机动加速度模型,而是直接正确地估计出机动目标的当前状态,不存在任何估计滞后与修正问题。最后,给出了算法的仿真分析。 In many practical applications, the position of a target is usually found in polar coordinates or sphere coordinates, not in Cartesian coordinates. Then, we need use a nonlinear method to solve the problem of target tracking in practice. Maneuvering target tracking is always very important in many military and nonmilitary areas. The difficulties of maneuvering target tracking lie in the uncertainty of state model. The paper presents an extended current statistical model for nonlinear maneuvering target. With the algorithm, the current state of maneuvering target can be estimated directly and correctly without assuming the model of maneuvering acceleration. At last, a Monte Carlo simulation is used to analyze the performance of the method.
出处 《电光与控制》 2004年第2期15-17,共3页 Electronics Optics & Control
基金 全国优秀博士论文作者专项基金(No.2000036) 高校骨干教师基金资助项目(No.3240)
关键词 机动目标 当前统计模型 非线性 跟踪 maneuvering target current statistical model nonlinearity tracking
  • 引文网络
  • 相关文献

参考文献11

  • 1BAR- SHALOM Y, FORTMANN T E. Tracking and Data Association [ M ]. New York: Academic press, 1988.
  • 2BIRMIWAL K, BAR- SHALOM Y. Maneuver Target Tracking a Cluttered Environment with a Variable Dimension Filter[A]. IEEE Trans. on AES[ C] . 1984.635 - 645.
  • 3KIRUBARAJAN T, BAR- SHALOM Y. IMM PDA for Radar Management and Tracking Benchmark with ECM[A]. IEEE Trans. on AES[C]. 1998. 1115-1132.
  • 4RAROAQ M, BRUDER S. Information type filters for tracking a maneuvering target [ A ]. IEEE Trans. on AES [ C ].1990. 441 - 454.
  • 5ANDRISANI D, KUHL F P, GLEASON D. A nonlinear tracker using altitude measurements [ A ]. IEEE Trans. on AES[C]. 1986. 533- 539.
  • 6WANG T C, VARSHNEY P K. Measurement preprocessing for nonlinear target tracking[J]. IEE Proceedings - F, 1993,140(5) :316 - 322.
  • 7李燕,郭立,朱嘉.一种精确跟踪目标的非线性滤波算法[J].中国科学技术大学学报,2001,31(4):488-494. 被引量:6
  • 8王永富,黄显林,胡恒章.非线性预测滤波器在机动目标跟踪中的应用[J].系统工程与电子技术,2000,22(8):6-9. 被引量:4
  • 9崔宁周,谢维信,余雄南.多传感器分布式推广卡尔曼滤波算法及其在雷达红外目标跟踪中的应用[J].电子科学学刊,1997,19(3):289-294. 被引量:10
  • 10ARTHUR G O, MUTAMBARA. Decentralized Estimation and Control for Multisensor Systems[M]. Boca Raton Boston London, 1999.

二级参考文献13

共引文献17

同被引文献23

  • 1谢建平.MIMO-OFDM系统中基于二维散布导频信道估计[J].陕西理工学院学报(自然科学版),2006,22(1):32-34. 被引量:2
  • 2BAR-SHALOM Y, CHALLA S, BLOM H A P. IMM estimator versus optimal estimator for hybrid systems [ J ]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(3) : 986-991.
  • 3BYUNG-DO0 K, JA-SUNG L. IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[ C ]//2005 IEEE International Radar Conference, Arlington, Virginia, USA, 2005 : 757-762.
  • 4QU Hongquan, PANG Liping, LI Shaohong. A novel interacting multiple model algorithm [ J ]. Signal Process- ing, 2009, 89(11) :2171-2177:.
  • 5NAIDU VPS, RAOL J R. Performance evaluation of interacting multiple model Kalman filter [ J ]. IETE Journal ofEducation ,2008,49 ( 3 ) :95-108.
  • 6SALMOND D. Target tracking, introduction and Kalman tracking filters[M]. QinetiQ Itd, 2001.
  • 7BAR-SHALOM Y , FORTMANN T E.Tracking and Data Association[M]. Orlando: Academic Press, 1998.
  • 8EFE M, ATHERTON D P, BATHER J A. Adaptive Kalman filters for manoeuvring target tracking[A].Target Tracking and Data Fusion, IEE Colloquium on[C], 4/1 - 4/7, 9 June 1998.
  • 9QIU B S, Liu H Y, CAI Y Q, et al. An adaptive parameter model for maneuvering target tracking[A].Signal Processing Proceedings, ICSP '98[C]. 12-16, Oct. 1998.
  • 10蔡庆宇 等.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997..

引证文献5

二级引证文献15

;
使用帮助 返回顶部