摘要
In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the extension of Newton-Raphson’s method and Horner’s method at the same time. This shows originality of Japanese native mathematics (Wasan) in the Edo era (1600- 1867). Suzuki (Ref.[2]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 1 introduces Murase’s three solutions of the cubic equation of the hearth. Section 2 explains the Horner’s method. We give the generalization of three formulas and the relation between these formulas and Horner’s method. Section 3 gives definitions of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), general recurrence formula of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), and general recurrence formula of the extension of Murase-Newton’s method (the extension of Tsuchikura-Horiguchi’s method) concerning n-degree polynomial equation. Section 4 is contents of the title of this paper.
In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the extension of Newton-Raphson’s method and Horner’s method at the same time. This shows originality of Japanese native mathematics (Wasan) in the Edo era (1600- 1867). Suzuki (Ref.[2]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 1 introduces Murase’s three solutions of the cubic equation of the hearth. Section 2 explains the Horner’s method. We give the generalization of three formulas and the relation between these formulas and Horner’s method. Section 3 gives definitions of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), general recurrence formula of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), and general recurrence formula of the extension of Murase-Newton’s method (the extension of Tsuchikura-Horiguchi’s method) concerning n-degree polynomial equation. Section 4 is contents of the title of this paper.