摘要
A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.
A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.