摘要
In the 12th Marcel Grossmann Meeting, July 9th, 2009, the author raised the issue of whether early graviton production could affect non-Gaussian contributions to DM density profiles. Specifically, does a first-order phase transition, in the formation of GW also lead to variation in density fluctuations of space plasma production? and curvature perturbations? We submit that the answer to this question will lead to quantifying fluctuations in space time which affect the stability and formation of DM halos and DM density profiles. Furthermore, we look at whether or not there is a relationship between DM and DE, and gravitons. This is suggested by a modification of Randal Sundrum brane world models, which may be used to admit a very small four-dimensional standard space time non-zero graviton mass. Non zero graviton mass in 4 dimensional space time, as well as modification of existing KK graviton theories will lead to a speed-up of cosmological expansion when the red shift was approximately z ≈ 0.5 −0.55, i.e., about a billion years ago. Finally, the issue of if gravity is a quantum phenomenon will be brought up in the context of understanding if or not squeezing of coherent states is mandatory at the onset of inflation.
In the 12th Marcel Grossmann Meeting, July 9th, 2009, the author raised the issue of whether early graviton production could affect non-Gaussian contributions to DM density profiles. Specifically, does a first-order phase transition, in the formation of GW also lead to variation in density fluctuations of space plasma production? and curvature perturbations? We submit that the answer to this question will lead to quantifying fluctuations in space time which affect the stability and formation of DM halos and DM density profiles. Furthermore, we look at whether or not there is a relationship between DM and DE, and gravitons. This is suggested by a modification of Randal Sundrum brane world models, which may be used to admit a very small four-dimensional standard space time non-zero graviton mass. Non zero graviton mass in 4 dimensional space time, as well as modification of existing KK graviton theories will lead to a speed-up of cosmological expansion when the red shift was approximately z ≈ 0.5 −0.55, i.e., about a billion years ago. Finally, the issue of if gravity is a quantum phenomenon will be brought up in the context of understanding if or not squeezing of coherent states is mandatory at the onset of inflation.