摘要
For surplus quarks (and baryons) to emerge after Big Bang, a nonequilibrium binding and superconductor-like condensation of quark-antiquark pairs must occur before the electroweak (EW) symmetry breakdown (similar for leptons). The formerly unknown dimensionless coupling to the Ginsburg-Landau like potential and the scale parameter in the EW theory then become microscopic functions of the massive quark and antiquark fields, thus defining the matter-antimatter asymmetry and the dark matter content in the Universe at correct orders of magnitude. Thereby also the number of free parameters in the Standard Model is reduced.
For surplus quarks (and baryons) to emerge after Big Bang, a nonequilibrium binding and superconductor-like condensation of quark-antiquark pairs must occur before the electroweak (EW) symmetry breakdown (similar for leptons). The formerly unknown dimensionless coupling to the Ginsburg-Landau like potential and the scale parameter in the EW theory then become microscopic functions of the massive quark and antiquark fields, thus defining the matter-antimatter asymmetry and the dark matter content in the Universe at correct orders of magnitude. Thereby also the number of free parameters in the Standard Model is reduced.