摘要
Pectinases are used in Enology for some different utilities. Enzymatic preparations from moulds are a mixed of different enzymes with strong and unspe-cific activities. Some Saccharomyces cerevisiae pro-duce pectinases which can be used instead of com-mercial preparations. The objectives of this work were to study the enzyme secretion by one Saccharo-myces cerevisiae (CECT 11783) for growing on grape skin (industry oenological by-product) as carbon source. Preliminary experiments showed that the strain produced pectinases for growing on grape skin without any other carbon source. Statistical treat-ment (factorial design 25) was applied to evaluate the influences of related factors (agitation, temperature, presence of peptone and detergent in the medium and time of growth) Variables with the most significant interactions for pectinase production were agitation and nitrogen source concentration. Response surface methodology showed that a first order model was not adequate for results. Nevertheless, the built of a sec-ond order model offered a polynomial equation which surface predicted a maximum of activity (52.68 enzymatic units) for specific values of the studied variables (147.8 rpm of agitation and 15.9 g of pep-tone/ L culture medium).
Pectinases are used in Enology for some different utilities. Enzymatic preparations from moulds are a mixed of different enzymes with strong and unspe-cific activities. Some Saccharomyces cerevisiae pro-duce pectinases which can be used instead of com-mercial preparations. The objectives of this work were to study the enzyme secretion by one Saccharo-myces cerevisiae (CECT 11783) for growing on grape skin (industry oenological by-product) as carbon source. Preliminary experiments showed that the strain produced pectinases for growing on grape skin without any other carbon source. Statistical treat-ment (factorial design 25) was applied to evaluate the influences of related factors (agitation, temperature, presence of peptone and detergent in the medium and time of growth) Variables with the most significant interactions for pectinase production were agitation and nitrogen source concentration. Response surface methodology showed that a first order model was not adequate for results. Nevertheless, the built of a sec-ond order model offered a polynomial equation which surface predicted a maximum of activity (52.68 enzymatic units) for specific values of the studied variables (147.8 rpm of agitation and 15.9 g of pep-tone/ L culture medium).